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AUTHORS' AB TRACT

The book analyzes stochastic characteristics of the physical
parameters of the atmosphere in the lower 100 km layer based on
statistical treatment of rocket sounding data. Models of the
random components of the physical parameters of the atmosphere
are developed; tHeyaeused.in investigating the control of flight
vehiclelmotionin the earth's latmosphere. Stochastic models Pf
flight vehicle motion are examined and methods of the statistical
analysis of the scatter of trajectories are proposed, along with
methods of evaluating the effect of atmospheric perturbat/ions on
flight vehicle motion and methods of the statistical optimization
of flight vehicle control systems.

The book is addressed to engineers, graduate students, scien-
tific coworkers, instructors, and students at hydromrteorological
and technical high educational institutions concerned with problems
of the physics and structure of the dense atmospheric layers and
problems of flight vehicle motion in the earth's atmosphere.

iii



EDITOR'S -FOREWORD

The continuous expanbion in the range of altitudes and velo-
cities of control flight vehicle has meant that the interaction
of flight vehicle with the ambient medium during flights in the
atmosphere is becoming ever more complex. Therefore in solving
problems of flight dynamics of controlled flight vehicle, increas-
ingly fuller knowledge of the physical properties of the atmosphere
and the correlations of their variation is needed. Accordingly,
it became necessary to generalize, based on modern requirements,
the wealth of accumulated experimental material.

Investigation',of the motion of flight vehicles in the atmo-
sphere, and especially, the solution of problems in optimizing
the control of flight vehicle motion, depends not only on the
completeness of information concerning atmospheric properties,
but increasingly on the form inlwhich this information is presented.

This monograph presents atmospheric characteristics in a form
that is most convenient for the use of modern mathematical apparatus
in solving problems of analyzing the dynamics of flight vehicle
control and in synthesizing the optimal control of their motion on
digital computers. In this respect, the monograph must be of great
interest to a wide range of scientific workers, engineers, and
graduatel students in the field of the theory and practice of design-
ing flight vehicle control systems. Specialist ,met.eor logists
may find extremely useful both the latest methods of solving the
most complicated problems of analyzing and synthesizing nonlinear
stochastic dynamic systems presented systematically in the monograph,
as well as a thorough presentation of material on methods of repre-
senting random componentsI of the thermodynamic parameters of the
atmosphere.

The collaboration of two specialists in related fields of
science -- meteorology and flight vehicle control theory -- unques-
tionably promoted a higher scientific level and greater applied
orientation of the monograph. All this enables one to hope that
the monograph will prove useful to a wide range of readers.

V. M. Ponomarev

iv



AUTHORS' FOREWORD /4

Among the numerous problems arising_ in recent years related
to the mastery of near-earth space and the rapid development of f
flight vehicles, the problem of controlling flight vehicle motion
in the dense atmospheric layers is vital.

The analysis and synthesis of systems for controlling flight
vehicle motion in the dense layers of the atmosphere with allowance for
the random scatter of its physical parameters relative to their
nominal values determined by models of the standard atmosphere has
led to the necessity of solving two interrelated problems.

On the one hand, we have the problem of determining the sta-
tistical characteristics of the random components of the physical
parameters of the dense atmospheric layers and developing models
and forms of representing the resulting information.

On the other hand, we have the problem of devising methods
and algorithms for taking Jaccount of the effect of random compo-
nents of the physical parameters of the atmosphere when solving
the problem of analyzing the scatter of flight vehicle trajectory
and the problem of synthesizing control systems of flight vehicle
motion that provide the requir\ed precision in maintaining specified
flight trajectories.

Success in solving the problems.icf analyzing and synthesizing
control systems of flight vehicle moition is to a large extent
determined by the form and the precision of specifying the random
components of the physical parameters of the atmosphere in mathe-
matical models of flight vehicle motion. Therefore in the mono-
graph presented to the reader the authors attempted to collect and
generalize extensive material of radiosonde, rocket, and radio-
meteor physical parameters of atmospheric measurements, to determine
the statistical characteristics of random components of the physical
parameters of the atmosphere, and to construct mathematical models
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for simulating the-se random components with analog and digital
computers as applied to the problems of control flight vehicle
flight. Great attention in the book is given to generalizing and
systematizing methods of the statistical investigation olf the
control of flight vehicle motion in the dense atmospheric layers,
formulating methods of evaluating the effect components of the /
physical parameters of the atmosphere have on the control process,
and presenting methods of the numerical optimization of flig4t
vehicle control systems.

The exposition of the material is addressed to the reader~ith
a Imathematical background at the level of the higher educational
institution and familiar with the fundamentals of probability
theory, the theory of random functions, and automatic control
theory.

We deem it our pleasant duty !to express our deep gratitude to
professors M. I. Yudin and Ye. P. Borisenkov, Candidate of Physico-
mathematical Sciences A. I. Ivanovskiy, and Candidate of Technical
Sciences A. A. Lukashevskiy, who at various stages of the prepara-
tion of the manuscript made a number of valuable comments that
improved the boo k.

The authors will be appreciative;)of readers who will find it
possible to send their critical remarks, responses, and wishes to
the Press."
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INTRODUCTION /6

In addition to the thrust force, gravity force, and aerodynamic
forces, the motion of flight vehicles (aircraft, helicopters,
rockets, spacecraft, and other moving objects) in the earth's atmo-}
sphere is also affected by a large number of random actions. They
usually include fluctuations in engine thrust, forces associated
with random skewing in the installation of wings, stabilizers,
combustion chambers, and engine frame; random components of aero-
dynamic forces, and so on. To a large extent, the motion of flight
vehicles is determined by the condition of the earth's atm6sphere.

The condition of theearth's atmosphere lis characterized by a
number of physical parameters, w ich undergo extensive variability
under the effect of processes occurring within the atmosphere
itself (cyclonic and anticyclonic activity, convective and turbulent
heat currents, and so on), and also under the effect of prolcesses
occurring in the Sun (fluxes of electromagnetic and corpuscular
radiation). The state of the atmosphere is also determined by the
time of the year, time of the day, and latitude of the location.

These processes determine principally the condition of the
dense atmospheric layers, by which we mean the lower layers of the
atmosphere (troposphere, stratosphere, and mesosphere).

When a flight vehicle is moving in the dense atmospheric layers,
it is acted on by thrust P, force of gravity G, and aerodynamic
forces Q, Y, and Z. Let us consider, equations of the'motion of the

mass center of a flight vehicle in the terrestrial coordinate
system. The origin of coordinates 01 of this system is fixed rela-
tive to the earth, the Oly axis is directed along the force of

gravity G,,the 01x axis is directed along flight vehicle motion,
and the Olz axis is perpendicular to the 01x and Oly axes and is

directed so as to constitute a right-handed coordinate system.
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Since the aerodynamic forces depend on the direction of the
velocity vector ofl the flight vehicle mass center, we introduce
a _wind-axes.. coordinate system. The origin of coordinates of
this system is in the ]raft mass center. The Oxw axijs is
oriented along the velocity vector, the Oyw axis is perpendicular
to the Oxw axis and lies In the plane of longitudinal flight
vehicle symmetry, and the Ozw axis is oriented perpendicular to
the Oxw and Oyw axes in the right wing of the flight vehicle when
it in forward motion.

Motion of the individual parts of the flight vehicle with /7
respect to its mass center is determined in a body-axes coordinate
system, whose origin of coordinates also lies in its mass center.
Here the Oxb axis is directed parallel to the longitudinal flight
vehicle axis, the Oyb axis is perpendicular to Oxb and lieb in
the plane of longitudinal symmetry, and the Ozb axis is directed
along the right wing of the flight vehicle perpendicular to Oxb
and Oyb.

Equations of force equilibrium in projections onto the axis
of the wind-axes coordinate system are of the forn:

dt

S(1)
myt = Psina+Y- Gcos 0;

dt

Here m is flight vehicle mass; v is flight vehicle velocity.;; is
the angle of inclination of velocity vector to the horizon; w is
the wind-axes yaw angle (angle between the projection of velocity
vector onto the plane of the horizon and the 01 x axis); a is the
angle of attack (angle between projection of flight vehicle velo-
city vector onto the longitudinal plane of symmetry Ybxb and the
longitudinal axis); and P is the slip angle (angle between velocity
vector and its projection onto the longitudinal plane of symmetry);

2 -

Z v C, - S
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are the projections of the aerodynamic forces on the axes of the
body-axes coordinate system; Cx , C , and C, are the aerodynamic
coefficients; q = Ipv~2 is the velocity head; va is air speed
of the flight vehicle; P is density of air; and S is the charac-
teristic dimension to which the coefficients are referred.

Air speed va is determined by the velocity of the flight
vehicle and the projections of windi velocity along the meridian
and parallel (u and v), and also by the projection of wind velo-
city w along the vertical.

The equations of motion of the flight vehicle mass center
can be written as:

dx
W c s 0r cos

dy

dt v cosisin

The systems of equations (1) and (3) describe the motion of the
flight vehicle mass center in the earth-babed coordinate system.
From Eqs. (2) it follows that the aerodynamic forces are deter-
mined by the density of air p. The aerodynamic coefficients Cx
Cy, and Cz, for near-sonic, sonic, and supersonic [flight vehicle
velocities, depend on the angle of attack a and slip angle 3,
M number, and the Reynolds number Re:

C, = C., (a, p, M, Re);

C, = C,(, , M, Re); (4)
C, = C, ( , t, M, Re);

M = -!-. Re = Ial,
a 11

where 1 is the length of the flight vehicle, V is the dynamic
viscosity of air, and va is the speed of sound in air.

The speedjof sound is determined in terms of the character-
istic of the unperturbed flow bythe formula

a= 1/k RT,

where k is the ratio of specific heat capacitiesl R is the gas
constant of air, and T is the absolute temperature of the unper-
turbed flow.

Summing up the foregoing and considering the relationship
between temperature, pressure, and density of air, it can be noted
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that the motion of a flight vehicle in dense atmospheric layers
is determined by the thermodynamic parameters of the air (density,
pressure, and temperature) and by the wind.

When calculating the trajectories of flight vehicles in dense
atmospheric layers, use is made of the standard atmosphere (the
SA-64 standard atmosphere is adopted in the USSR for altitudes to
+200,000 m).

However, _actual trajectories )as a rule differ.widely
from calculated trajectories. One reason for this is the devia-
tions in the actual state of atmospheric parameters (T, p, and p )
from the values (Tst, Pst, Pst) adopted in the model:

Ap-=p--P /
st

There are three directions which can be pursued in allowing /9
for the effect of the atmosphere on flight vehicle motion. The
first of these is to use the actual distribution of the physical
parameters of the atmosphere. Essentially it is the most effec-
tive approach, however at the present timi'thaere rejnot yet available
methods of determining the state of the atmospheric parameters
with the required precisi?: and completehess for a specified time.

The second direction involves determining the values of the
physical parameters of the latmosphere by using hydrodynamic models.
Unfortunately, these models have not yet been developed for the
stratosphere and mesosphere owing to the very great difficulties
of mathematically describing the processes occurring therein,
while existing hydrodynamic models capable of precalculating the
temperature and pressure fields in the troposphere do not thus
far provide the required precision.

Finally, the third direction proposes using the statistical
characteristics of the physical parameters of the atmosphere;
essentially it amounts to the following. As we know, the motion
of a flight vehicle is described in the general case by a system-
of nonlinear differential equations, whose right sides include
the external random perturbations, including atmospheric pertur-
bations. If the statistical characteristics of the atmospheric
perturbations are known, various methods of statistical analysis
of dynamic systems make it possible to determine the characteristics
of the scatter of flight vehicle trajectories in the dense atmo-
spheric layers.
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The foregoing applies fully to problems of controlling space
flights. In this case the statistical characteristics of fluctua-
tions in the physical parameters of the atmosphere are used in
solving the problems of optimizing flight control systems and
predicting the state of the atmosphere for control purposes. In
this monograph, the authors place their emphasis precisely on
this third direction.

The monograph consists of two parts that are interrelated,
but at the same time have a certain autonomy. This autonomy lies
in the fact that results jpresented in the two parts of the
mongraph can be used in solving other problem unrelated to the
particular problem merely under study here.

-The-f-irs-t--pa-rt-i-nc-l-udes-thefirstfour chapters of the book
dealing with the atmosphere proper. Chapter One examines the
temperature regime and the distribution of pressure and density
of air in the dense atmospheric layer, briefly analyzes the causes
responsible for particular changes in these physical parameters
of the atmosphere, and indicates the limits of possible variations
in these parameters. The wind regime in the troposphere, strato-
sphere, and mesosphere is the subject of the second chapter.
Chapter Three contains information on the vertical statistical
structure of the temperature, pressure, air density, and wind
fields in the dense atmospheric layers. The numerous statistical /10
characteristics given in this chapter were obtained for two groups
of latitudes based on data of American rocket sounding. They arP
analyzed in detail and evaluated from the standpoint of their
statistical significance.

Chapter Four is a bridge connecting the structure of fields
of physical parameters of the atmosphere with questions of the
statistical analysis of dynamic systems and the synthesis of
controls. It examines several statistical models of the physical
parameters of the atmosphere. The theoretical conclusions con-
tained in the chapter are extensively illustrated with specific
examples of models of temperature, air density, and wind velocity
components.

The second part of the book consists of the four last chapters
and expounds methods of the statistical investigation of the con-
trol of flight vehicle motion in the dense atmospheric layers
described by nonlinear differential equations.

In Chapter Five, based on the above-indicated statistical
models, mathematical models of the motion of flight craft in dense
atmospheric layersi described by nonlinear differential equations
are constructed. Primary attention in this chapter is given to
methods of the statistical analysis of the scatter of parameters
of flight vehicle trajectories when various mathematical models
are used. In addition to methods of the statistical investigation
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of nonlinear processes based on linear approximation, approximate
numerical methods of the statistical analysis of nonlinear systems
are set forth (the method of statistical tests, the B. G. .Dostupov
method, the interpolation method, and so on); ways of using the
method of least squares in statistical analysis are outlined.
Urgent problems in the investigation of flight vehicle motion in
the earth atmosphere include evaluation of the effect of atmo-
spheric perturbations on the scatter of trajectories. Chapter Six
in fact deals with methods of solving these problems. Much atten-
tion in it is given to setting forth a method of stochastic appro-
ximation as applied to problems of setting up polynomial depen-
dences of motion parameters on random factors characterizing
atmospheric perturbations.

Chapter Seven sets forth numerical methods of the statistical
optimization of co trol processes of flight craft motion in dense
tmospheric layers. Elaborating numerical methods of the statistical
optimization of control processes, became possible thanks to the use
in control s$stem design practice of high-speed digital computers.
This then determined the nature of the'"methods examined in the
book and their algorithmic structure. -This chapter gives a com-
parative characterization of a number of computational prospects
of methods of searching for the extremum for the statistical
characteristics of stochastic control processes.

The methods and algorithms of statistical optimization consid- /11
ered in this chapter can be successfully employed also in optimiz-
ing stochastic processes of controlling various objects of other
types described by nonlinear stochastic differential equations.

Chapter Eight deals with methods of statistical prediction
of the parameters of flight vehicle motion described by nonlinear
stochastic differential equations. Mathematical relations for
solving problems of predicting phase coordinates are derived within
the framework of regression analysis.

The book presents a large number of statistical characteristics
of the physical parameters of the atmosphere and the results of
solving practical problems.

xii
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THE ATMOSPHERE AND THE CONTROL OF FLIGHT VEHICLE MOTION

Ye. P. Shkol'nyy and L. A. Mayboroda

edited by Doctor of Technical Sciences,
Professor V. M. Ponomarev

CHAPTER ONE /12

DISTRIIBUTION OF TEMPERATURE, PRESSURE,
AND AIR DENSITY IN THE DENSE ATMOSPHERIC LAYERS

1.1. Temperature Regime in the Troposphere, Stratosphere, and
Mesosphere

The temperature regime is one of the main factors determining
the physical state of the atmosphere. The nonuniform distribution
of temperature in the atmosphere accounts for the specific struc-
ture of the pressure field and, therefore, of atmospheric circula-
tion relative to the earth's surface.

Change in temperature in the atmosphere occurs under the
action of two main causes. The first is the interaction of the
atmosphere with the underlying surface, and the second is repre-
sented by processes occurring within the atmosphere itself.

Change in temperature with time at some point in space can
be described with the equation

oT I A dp (T dT +4 dT (1.1)
- ( - + s 3 + -j - W --

in which p is the density of air; cp is the heat capacity of air
at constant pressure; A is the thermal equivalent of work; EI,
E2 , and E3 are influxes of heat caused by the turbulent thermal
conductivity, radiative heat transfer, and phase transformations
of water in the atmosphere, respectively; u, v, and w are the
components of their velocity relative to the x, y, and z axes
(the x axis is tangent to the circles of the latitudes, the y axis
is tangent to the meridians, and the z axis is directed vertically/
upward); T is air temperature in an absolute scale; and p 'is air
pressure.

In the troposphere, the second term in Eq. (1.1), can be
neglected owing to its smallness. In the upper atmosphere, as
shown in the period of atmospheric tides, this term now plays
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an essential role. The remaining terms iriEq. (1.1) describe
temperature change due to the influx of heat, advective transport,
and adiabatic ascent or descent of air masses.

The main source of heat for the earth's surface and the atmo-
phere is solar radiation. The Iradiant energy of the Sun, on
passing through the atmosphere, is considerably weakened. Its / /13
weakening occurs due to scattering and absorption by molecules
and atoms of the gases comprising the atmosphere and also by
impurities presIent in the air. However, most of the solar energy
penetrates through the atmosphere and is absorbed by the earth's
surface. In turn, the surface of the earth is a source of long-
wave radiation, which is absorbed by the atmosphere. The differ-
ence between the amount of absorbed direct and scattered radiation
and the radiation by the underlying surface that is, the radiation
budget of the earth's surface is one of the most important factors
determining the temperature regime of the lower atmospheric layer
-- the troposphere. Investigations showed §_7 that in the equa-
torial zone between 390 N. and S. Lat the radiation budget is
positive throughout the year. To the north and to the south of
this zone it is negative in the cold period of the year.

The transfer of heat from the underlying surfac to the air
takes place by a turbulent exchange and long-wave radiation. Of
high importance in the heat regime of the troposphere is the heat
realized from the phase transformations f water. Turbulent
transport plays a basic role in the lower troposphere. -'In the
upper troposphere it markedly weakens and radiative heat flux
becomes determining. In the stratosphere, as shown by studies
/ 87, turbulent thermal diffusivity plays an essential role. In
any case, without allowing for turbulent heat transport, we are
unable to understand how the radiation conditions existing in
the stratosphere lead to the formation of temperature profiles.
Evidently, this is true also of the mesosphere. The main absorb-
ing components of the atmosphere are water vapor, carbon dioxide
gas, and ozone.

The amount of heat which arrives per unit area of the earth's
surface in the lower latitudes during the year considerably
exceeds the amount of heat hrriving in the upper latitudes. Thus,
the heating of the earth's surface decreases on the average from
equator to pole. Accordingly, a horizontal temperature gradient
is induced in the troposphere oriented from pole to equator.

Whjle the main heat source for the troposphere is the earth's
surface heated by solar rays, in the stratosphere and mesosphere
the distribution of temperature by altitude and latitude as well
as its seasonal changes are determined by.the absorption of short-
wave solar radiation and also by radiation of the troposphere in
the infrared spectral region. Ozone is most significant in the
absorption of ultraviolet solar radiation in the stratosphere and
mesosphere.



Ozone is observed in the atmospheric layer from the earth's
surface to an altitude of 70-80 km, but most of it is concentrated
at altitudes of 20-25 km. The Hartley band (1800-3400 A)iPlays
the p incipal role in the absorption by ozone of the ultraviolet
spectral region. Absorption of this spectral region of solar
radiation leads to heating of the atmosphere; its maximum occurs /14
at altitudes of 45-55 km. In addition, atmospheric heating also
occurs owing to the absorption of solar radiation by molecular
oxygen. It is evident mostly noticeably at altitudes higher than
90 km. The radiation ofi'heat in the stratosphere and mesosphere
occurs principally in the 15 p.m bandfor carbon dioxide gas and
the 9.6 )m band for ozone. The joverall effect of heating and
cooling, as shown by investigation ~267 does not exceed 10/day for
the summer season in the 14-30 km atmospheric layer. Thus, this
layer is close to the state of radiative equilibrium. In winter
it somewhat increases from equator to polar latitudes.

The upper stratosphere and the lower mesosphere are a strong
heat source in summer, with its maximum intensity in the polar
region of the summer hemisphere. In the winter hemisphere, with
the exception of the polar latitudes, heating also predominates
over cooling, however here the heat sources are weaker than in
the summer hemisphere. In the polar latitudes in winter, in
contrast, cooling predominates over heating. In general, this
pattern is observed alsojin the upper mesosphere, though heat
sources and sinks in it are weaker. In the region of the meso-
pause, for example, a small heat influx predominates; its maximum,
40/day, lies near the summer pole.

Studies showed jZ109o that the stratosphere and the meso-
sphere are highly sensitive to fluctuations in solar radiation.
A 12% change in the absorption of ultraviolet radiation by ozone
above _135 km, and by oxygen above 20 km leads to a 20 temperature
change. The stratosphere in the 20-35 km layer is even more sensi-
tive to fluctuations in the absorption of solar radiation in the
visible spectral region. For example, a 3-6% rise in the visible
radiation also leads to a 20C rise in temperature in the atmospheric
layer indicated above. Therefore the reflection of visible radia-
tion downward, especially from clouds, is highly significant. It
is established that large and dense cloud fields observed in the
middle latitudes in winter can increase through reflection the
amount of ,)radiation arriving at the stratosphere in the visible
spectral region by 35%, which corresponds to roughly a 10% rise
in temperature in some of its region 57097.

Radiation conditions in the stratosphere and mesosphere lead
to the horizontal temperature gradient in summer being directed
south to north, and in winter -- north to south (here and in the
following we consider the gradient as a vector directed toward
the side of increasing function). A consequence of this temperature
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distribution is that in winter westerly transport of air masses
develops in these atmospheric layers. In summer, in contrast,
transport from east to west predominates. In the troposphere
however westerly transport is predominant in all seasons of the
year. However, in the zonal circulation waves continually are
generated which lead to the appearance of the meridional (omponent /15
of air motion. Advective transport of cold air masses to the south
occurs, and of warm air masses to the north. As a result of the
interlatitudinal exchange, redistribution of energy between the
warm and cold atmospheric regions is observed. Interlatitudinal
exchange acquires its highest intensity during the cold half of
the year.

Advective temperature changes in the troposphere can sometimes
exceed 100 C per day. Advective temperature changes of similar
magnitude are observed in the stratospheres as well. Above 40 km,
advective transport of air masses can lead to even greater changes
in air temperature. In the stratosphere over the White Sands
station, in a day the temperature can rise 100 C and higher and
drop 300C or more owing to the advective factor in the 40-km
atmospheric layer 87. Advective temperature changes of similar
magnitude in the atmosphere have been obtained also in the studies
53, 10lO

As indicated above, adiabatic temperature changes also occur
in the atmosphere; they are associated with ordered large-scale
vertical motions. In the troposphere ascending and descending
motions result from thermal convection and horizontal convergence
or divergence of air currents arising owing to turbulent friction
in the boundary layer of the atmosphere and the nonsteady state of
processes occurring in the atmosphere. The most important role
in the thermal regime of the atmosphere is played by ordered
vertical motions embracing quite large air volumes. The velocity
of ordered vertical motions is low. It averages 1-2 cm/sec and
can vary from several tenths to 5-10\ cm/sec. They lead to a
3-50 C temperature change per day in the troposphere.

In the stratosphere and mesosphere, ordered vertical motions
also are small in s4mmer Z94, 106/. Their velocity as a rule is
several mm/sec. In winter vertical motions in the stratosphere
have approximately the same value as in the troposphere. Vertical
motions in this a.tmospherc layer also lead to temperature change
at the corresponding levels-, where these changes are the greater,
the more stable is the temperature stratification of the air.

Based on data obtained from direct and indirect observations,
V. R. Dubentsov /_67 constructed a vertical meridional profile of
temperature up to the altitude of 100 km (Fig. 1.1). In the
profile is shown the position of the transition of layers between
the spheres at which the lower 100-kilometer atmospheric layer



is divided. The temperature field, as shown in Fig. 1.1, has
several features. In the stratosphere and lower mesosphere there
is situated in summer a region of heat with maximum temperatures
over the polar region. A further rise in altitude is accompanied
by a rapid drop in temperature, and in.the upper mesosphere there
is now found a region of cold, where the lowest temperatures are /16
also observed in the polar region.

In winter, the temperature in the lower stratosphere decreases
to an altitude of approximately 30 km. Above 30 km it somewhat
rises and then again falls. The verticalltemperature gradiets in
winter in the mesosphere have a considerably smaller value than
in summer.

Data from rocket sounding of the atmosphere showed that in
the stratosphere of the Arctic there is a nearly isothermal atmo-
spheric layer from 10 to 30 km /787. Only above 30 km is there
a rise in air temperature with altitude. In the temperate lati-
tudes the isothermal layer is somewhat narrower. The vertical /17
temperature gradient at the altitudes 50-55 km in the polar lati-
tudes changes over relatively wide limits. Whereas at the outset
of the polar night it averages 1.50/km, by the end of the polar
night it is 5.50/km. In the middle latitudes, the vertical temper-
ature gradient in this atmospheric layer averages about 2°/km.

The vertical temperature profile in the tropical latitudes
can be judged only from episodic observations taken with meteoro-
logical rockets.

Investigations showed that in the equatorial zone seasonal
temperature changes in the stratosphere, mesosphere, and lower
thermosphere are small /LIL7. Small seasonal changes in air
temperature in the lower latitudes is also indicated in _~7.
The authors of /897, subjecting the air temperature extrapolated
to 150 N. Lat to harmonic analysis,obtained the amplitudes and
phases of the annual and semiannual cycles of temperature change
at different altitudes (Table 1.1).

As follows from Table 1.1, the amplitude of annual and semi-
annual temperature fluctuations in the atmospheric layer-from
37.5 to 52.5 km is approximately identical. At the lower levels,
the amplitude of semiannual fluctuations is nearly three times
greater than the amplitude of the annual fluctuations.

Table 1.2 presents annual differences between the maximum and
minimum mean-monthly temperatures for 15, 30, and 600 N. Lat by
Cole, Kantor, and Nee __97, and for 40, 50, 70, and 800 N. Lat by
L. A. Ryazanova 5637.
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TABLE 1.1. AMPLITUDES AND PHASES OF
'ANNUAL AND SEMIANNUAL CYCLES OF TEM-
PERATURE CHANGE FOR THE TROPICAL

ZONE (i50 N. Lat)

6-month cycle 12-month cycle )
Alfitude de)

km ampli- Jdate of jampli-. date of--Is
tude,deg.lst max. tude,deg. maximum

27.5 2.2 21[IV 0,8 12/V
32.5 2.8 3/V 0,8 21/1
37,5 1,2 9/IV 1,3 3/IV

42.5 1.1 24/III 1,4 27/1
47.5 1.3 27/Ill 1.2 3/1

52,5 2.0 1/11l 1.6 6sXII

From Table 1.2 it follows that the amplitude of annual fluc-
tuations in temperature rises with latitude, and especially
rapidly at latitudes higher than 400, where its increase is by a
factor of 3-4.

TABLE 1.2. ANNUAL DIFFERENCES BETWEEN /18
MAXIMUM AND MINIMUM MEAN MONTHLY TEM-
PERATURES (oC) AT DIFFERENT ALTITUDES

AND LATITUDES

Altitude Latitide, degrees 1

1km 1" 1 :1, -10 f 50 60 7f sO

25.0 4.9 11.0 23.0 18,0 3460 40.0

27.5 5.4 5.5 20.2

30.0 7,7 11.0 21.0 23.0 37,0 46.0

32.5 6,5 8.2 24,0

35.0 8.6 9,0 22.0 28.0 40.0 38,0

37.5 3.9 7.9 28.8

40.0 7.2 8.0 28.0 29.5 39,0 42.0

42.5 4.2 7.0 30.3

45.0 6.7 22,0 27.2 40,0 36.0

47.5 3.4 5.4 23.2

50.0 5.0 17.0
52,5 7.0 4.0 17,0
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The amplitude of the annual fluctuation is small. Table 1.3
contains the amplitudes of diurnal and semidiurnal temperature
fluctuations over the Azores /397 obtained by harmonic analysis
of the data of atmospheric radii sounding.

TABLE 1.3. AMPLITUDE OF DIURNAL AND SEMI-
DIURNAL CHANGES IN TEMPERATURE OVER THE AZORES

Altitude,km iAmplitude,'C F lAlti- lAmnplitude, OC
semidiuil diurnal iitude,km! Semidiufi Diurnal

1.5 0.02 0.20 12.0 , 04 0.29
3.0 0.02 b014 16,0 0.09 0,40
5.5 0,04 0*19 20,0 0'16 0O68
9.0 0.04 0.27 24.0 0.09 0,78

The amplitude of the diurnal trend of temperature rises to
1.0-1.50 C at the altitudes'25-30 km, and to 3-50 C at the altitudes
40 km and higher - 7.

Special investigations of the diurnal trend of temperature
in the atmospheric layer from 30 to 60 km were conducted over the
American White Sands Proving Grounds 8_7, For this purpose, 11
meteorological rockets were launched with 2-hour intervals between
launches.

Results of the observations are in Fig. 1.2, from which it /19
follows that the diurnal trend of temperature is best \defined
at the altitudes 45-55 km. The temperature maximum in this atmo-
spheric layer is observed at the instant of time close to 14:00,
and the temperature minimum -- about 4:00 local time. The differ-
ence between the maximum and the minimum temperature at these
altitudes was 15-200 C. Below 45 km, the diurnal temperature trend
is less strongly pronounced.

A great deal of attention recently is being given to investi-
gating correlations between air temperature at different levels
in the troposphere and lower stratosphere. It was shown /O, 38,
68, 697 that in the troposphere of the high and middle latitudes,
the autocorrelation of temperature with increase in altitude
decreases. At the level of the troposphere the coefficients of
correlation decrease to z2 ero and "above this level they become
negative. The root mean squaref deviations of temperature from a
limited series of rocket sounding data (about 200 domestic and -
foreign soundings) were obtained by A. S. Borovikova and 0. B.
Mertsalova /_, and also by V. G. Kidiyarova j2L7 for/the 30-80 km
at ospheric layer. They indicate that temperature variability in
this atm;:spheric layer is 6-12%. Statistical characteristics of
temperature and atmospheric parameters will be discussed in greater
detail below.

8



1.2. Distribution of Pressure in the Troposphere, Stratosphere, and
Mesosphere

General correlations of change in pressure with altitude are
simpler than for change in air temperature with altitude. 'While
air temperature in some atmospheric layers falls off, and rises
;in~ others, Ipressure steadily decreases with altitude. However,
the rate of the pressure decrease is not the same. It depends
on air density. In the lower atmospheric layers where the air
density is higher, pressure falls off faster, and in the upper
layers -- more slowly. In addition, if one considers that the air
density depends not only on altitude above sea level, but also on /20
air temperature, it can be concluded that pressure at the same
altitudes can vary in different ways.

Two factors affect the baric relief of the atmosphere at a
specific altitude: pressure at sea level and the mean temperature
of the layer enclosed between sea level and the surface under
consideration. 'The effect of these factors is not the same every-
where. With--increasing altitude, the mean temperature of the
layer plays an ever larger role, and sea level pressure -- an ever
:smaller role. Even in the middle troposphere as a rule nearly
complete correspondence between the lower values of the altitudes
of isobaric surfaces with the lower values of the mean temperatures
is observed. Therefore, altitude regions of reduced pressure
(cyclones and troughs) are formed where there ..'is relatively
cold air mass, and the altitude regions of increased atmospheric:/
pressure (anticyclones and ridges) are formed in warm air masses.
In a few words, the structure of the pressure field in the atmo-
sphere depends on the structure of the temperature field.

As noted in Section 1.1, in the troposphere the highest air
temperatures are observed in the tropical zone, and the lowest --
in the polar regions. This distribution of heat and cold is
characteristic both of summer and winter, therefore isobaric sur-
faces in the troposphere on an average are situated the highest in
the tropics /5.

In the stratosphere, the baric field, like the temperature /21
field, has a well-pronounced seasonality. Since in summer the polar
region heats up most strongly and, ,therefore, the temperature
gradient is oriented south to north, the highest values of the
geopotential are observed over the pole. The isobaric surfaces'
become lower toward the south. A baric field typicall for the
summer season is shown in Fig. 1.3 /47. In winter, in contrast,
the lowest values of the altitudes of isobaric surfaces in the
stratosphere are noted over the pole, as for example, in the map
of the baric topography of the 10 mb isobaric surface on 1 January
1962 (Fig. 1.4). Thus, in winter the baric field in the strato-
sphere has a similarity with the baric field in the troposphere.

9
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Fig. 1.2. Diurnal trend of Fig. 1.3. Map of altitudes of 10 mb
temDerature over White Sands isobaric surface on 23 May 1959

Investigations showed that seasonal variations in the mean
pressure values in the stratosphere and mesosphere have large values,
especLally in the polar regions /j77. In winter they are identical
throughout the entire atmospheric layer from 30 to 70 km and~average
20%; in summer the increase with altitude from 20% at 30 km altitude
to 32% at 50 km altitude; they remain nearly constant: Jwith further
increase in altitude.

Variability in atmosphetic pressure relative to a seasonal
mean proved to be greater in winter than in summer Z . Whereas
in winter the pressure fluctuates in the range 25-35o in the 30-80
km layer, in summer Its variability is 10-15%.

In addition to seasonal changes, atmospheric pressure exhibits /22
diurnal variations (Table 1.4).

Table 1.4 contains diurnal and 'semidiurnal variations of pres-
sure over the Azores j9-7.

From Table 1.4 it follows that up to an altitude of 5.5 km,
the amplitude of the semidiurnal changes exceeds the amplitude of
the diurnal pressure changes. The amplitude of the semidiurnal
variations rapidly decreases with altitude and becomes insignifi-
cant in the middle stratosphere. A further increase in altitude
is related to a rise in semidiurnal pressure variations. The
amplitude of diurnal pressure changes reaches a maximum at altitudes

10



9-12 km and thereupon
decreases slowly with
altitude. But the rela-
tive amplitudes in
diurnal variations of
pressure increases with
altitude. Whereas at
an altitude 3 km the
annual mean amplitude

.. H 3
28 of diurnal pressure

I Io changes is 0.03%, at
H the altitude 9 km it

rises to 0.1 at the
altitude 20 km -- to

29s0 0.4%, and at the alti-
6o tude 30 m -- to 1.2%.

SDiurnal pressure changes
increase with altitude

_H .even above 30 km, espe-
o cially in the high lati-

tudes in winter.

Fig. 1.4. Map of altitudes of 10 mb Data of atmospheric

isobaric surface on 1 January 1962 rocket sounding showed
that in a day the pressure

TABLE 1.4. AMPLITUDES OF DIURNAL AND SEMI-
DIURNAL VARIATIONS IN ATMOSPHERIC PRESSURE

OVER THE AZORES /j97

Altitide,km Am li tu d e mb Alti- ) Amplitude, mg_
diurnal ]Isemidiurl tide, ikm diurnalU. semidiu al

1.5 0.18 0.47 16,0 0,26 0.09
3,.0 0,25 0,37 20.0 0.21 0.07
5,5 0.28 0. 29 22.0 0,.18 0.05
9.0 0,32 0,18 30.0 0.12 0.01

12,0 0.32 0,14

in the stratos here of the upper latitudes can vary 10-15%. For
example, over the settlement of Fort Greeley the air pressure at
the altitude 35 km decreased 17% from 10 to 11 March 1964, and
increased 13% at the altitude 45 km from 26 to 27 October.

11



1.3. Density of Air in the Troposphere, Stratosphere, and Mesosphere

The pressure distribution in the dense atmospheric layers
depends on the structure of the temperature field, therefore the
air/pressure is a function of the mean temperature of the under-
lying atmospheric layer. The air density in some point in space,
in accordance with the equation of state, is determined by temper-
ature and pressure.

Air pressure falls off rapidly with altitude. But changes in
air pressure in the dense atmospheric layers are quite large at /23
all altitudes. The air temperature in an absolute scale varies
relatively little. This circumstance is responsible for the fact
that a change in air density with increase in altitude is increas-
ingly determined by pressure change. This dependence of air density
on temperature and pressure shows up well if one compares the dis-
tribution of mean pressure and mean air density with altitude.

Ps1t 60 N. Lat 0, N. Lat Psi
20 260

2 0 - 5 0 k T ' X -2
020

J-220

2 40 I km -20

/ ,X

Fig. 1.5. Annual trend of mean monthly values
of air density in deviations from the 1952 US
Standard Atmosphere

- X _

A study L10 _ showed that the highest air density is observed
in summer, and the lowest in winter. The maximum seasonal varia-
tions in air density are noted at the altitude of about 70 km and

12
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130 and 70% from the standard density of air at the latitude of
600, and 110 and 95% -- at the latitude 300. Seasonal variability
at all latitudes decreases significantly above 70 km.

The annual trend of mean monthly values of air density at the
altitudes 40, 50, and 60 km for 30 and 600 N. Lat is shown in
Fig. 1.5 also in deviation from the 1952 US Standard Atmosphere
ZlOk7. The data in Fig. 1.5 show thajt the highest density of air
at the latitude 30 is noted in May and June. The maximum shifts
to June and July at the latitudes 600. The lowest air density is
noted at both latitudes in December and January. The amplitude
of changes in the air density at latitudes 600 considerably exceeds
the amplitude at the latitude 300 . Considerable deviations of the
mean monthly density from the smoothed values denoted by the curves /24
occur at the latitude 600, especially in autumn and winter. These
deviations are evidently associated with abrupt warming in the strato-
sphere (see Section 1.4).

Differences between the maximum and minimum mlonthly air densi-
ties, which are observed ---as already noted -- in January and June,
increase with latitude. Whereas this difference isl 29%Jat the alti-
tude 40 km and latitude 600, it is 61% at the latitude]800 , that is,
it increases by a factor of two. The trend in the seasonal vari-
ability of air density described in different latitudes of the
northern hemis here agrees well with the results obtained by V. G.
Kidiyarova Z2 .

Investigating the distribution of air density above 80 km
involves major difficulties. They consist in the fact that there
are only isolated cases in which meteorological rockets have risen
to altitudes above 80 km, and various indirect methods, owing to
their inadequate precision, afford only in approximate estimate
of atmosphric density. One of the most exact indirect methods
is the techniquelof determining density by means of observations
of meteor trails.

Small solid particles -- meteors -- continuously fall into
the earth atmosphere. Their number usually exceeds 150-200 per
hour. On entering the atmosphere, the meteors heat up strongly
as they decelerate in its relatively dense layers and are vaporized
in the layer from 110 to 70 km. Here a growing trail (column)
of strongly ionized air 40-50 km and several meters in diameter
is formed, which can be photographed.

The principal eqiations of the physical theory of meteors
make it possible to determine the density of the atmosphere in
the meteor zone. If the deceleration of the meteor dV/dt is
determined, the density of the atmosphere can be calculated by
the formula p6, 6.7.
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PkM" V-2dv 7

where k is a coefficient expressed by the formula

k =3

and Fis the coefficient of deceleration; 6 is the density of
the meteor particles; M is the mass of the meteor body; and'V\is
the velocity .Of the meteor.

These quantities can be found from the brightness and other
characteristics of meteors determined by photographs of meteor
trails.

Fig. 1.6 shows the variation in air density with altitude
obtained from 179 evaluations made on the basis of the above-
mentioned technique 54, .657 in Kiev. Here also presented is
the variation in density with alt tude based on measurements in
Odessa (curve 1), as well as the values of air density based on /2
measurements in Kiev when only data for meteors with velocities/
greater than 40 km/sec (curve 3) were considered. From Fig. 1.6
it follows that satisfactory agreement is observed in the alti-
tude range 90 to 110 km. At lower altitudes the air density
based on Kiev data is considerably higher than based on Odessa
data. The overstatement of density values obtained from Kiev
measurements is accounted for by the fact that here the air
density was calculated from a relatively larger total of meteors
whose velocity was lower than 40 km/sec, while the above-presented
formulas are valid given the condition that the meteor velocity
exceeds 40 km/sec 167. If we do not include meteors with low
velocity, the results Of the determination of air density in these
stations agrees much better.

Only isolated experiments have been conducted in studying
diurnal variability of air density in the stratosphere and meso-
sphere. An example of these can be taken as the two launches of
meteorological rockets made over Kwaj lein Islandlwith a 13-hour
interval .L7.

The measurements show that the air density observed at noon
time differs from the density observed at night. In the layer from
30 to 120 km, the atmospheric density in the day exceeded the night
value of density by about 10%. Investigations with meteor trails
showed that in the 80-110 km atmosphere the air density changes
20% from day to night in the middle latitudes.

14



1.4. Abrupt Warming in the Strato-
sphere and the Associated Varia-
tions in Thermodynamic Parameters

9, of the Atmosphere
S2

In winter, the usual struc-
ture of the temperature field
caused by radiative and advective-
dynamic factors in the stratosphere
and mesosphere is sometimes dis-
turbed. This becomes evident

S I above all in the rapid temperature
90 too oH kmi rise at some level, which during

a short time interval encompasses
Fig. 1.6-- The variation in air a large part of the stratosphere
density with altitude deter- and rarely the lower half of the
mined from meteor brightness: mesosphere. A sharp temperature
1. Odessa rise in these atmospheric layers
2. K iev (all meteors) leads to quite large changes in
3. Kiev (meteors with 1V 4 0 pressure and air density. Warm-

km/sec) ing up of the stratosphere was
first detected by Sherhag over
Europe in February 1952 I717, 1187.

Some investigators state that warming in the stratosphere /26
was first discovered in higher atmospheric layers. For example,
during the warming period occurring in January-February 1958 Z507,
at the altitude of 40 km over Hays island, on 19 January the air
temperature reached 290 0 K, while on 16 and 21 December 1957 it
was]223 and 24~oK, respedtively. During this time the temperature
at altitudes below 28-30 km differed little from the temperature
usually observed here in winter. By 10 February 1958, the warming
encompassed the atmospheric layer from 15 to 35 km in which an
unusually high temperature was detected, 2400 K. In similar fashion,
warming developed in January 1960, January 1961, and so on L/0§7.

In radiosonde and especially rocket observations conducted
in the past decade in the USSR and the United States, winier strat-
ospheric warming was regularly detected. This phenomenon is
observed nearly every year, and in some years even several times
during the winter season.

Table 1.5 gives a list of warmings occurring in the high
latitudes of the northern hemisphere at the altitudes 23-25 km in
1957-1964 according to Kh. P. Pogosyan and A. A. Pavlovskaya

, 56, 57 .

During the period of warming, air temperature often increases
by a large value. At the altitude of 23-25 km, as shown in the table,
the stratosphere becomes 20-400 C warmer, and during the January 1963/27
warming, there was a 560C temperature rise. Observations showed,
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TABLE 1.5. WARMINGS OVER THE ARCTIC
AT THE ALTITUDES 23-25 KM (1957-1964)

Dura- C__ -Extent: f
Warming period I tion, at beg at end -waring,

days Iof pe of pe warmng,

3-9/ XI 1957 7 -65 -25 +40
24-1-1/11 1958 8 -76 --.1 +35
15-20/XI 5 -59 -47 +12

17-2011 1959 3 -61 -,Il +20
:3-13/11 10 -- 61 -47 4-14

2-1411 1960 / 12 --60 -35 -1-25
5-11111 6 -65 -49 +16

231 XI-3/X11 10 - 9 -49 +20

19-27/XII 8 -65 -48 +17
3-13/ 1961 10 -79 --5 +26

26/11-8'111 10 -- 74 ---37 +37

:30/I-19/11 1962, 20 -65 -3-1 +31
17-28/1 196 J- 11 -75 -19 +56
19 11--/11 1954 13 -74 -32 442

however, that maximum heating of the stratosphere usually occurs in
the 30-40 km atmospheric layer. From the data of rocket sounding,
the air temperature over Churchill station made in January 1958
increased by nearly 700C at the altitude 40 km.

As the warming embraces increasingly lower levels, the upper
stratospheric layers in which it began graduallycooled down.

Warring does not occur simultaneously in the entire upper-lati-
tude stratosphere. Data from a rocket sounding in January 1958
showed that a temperature rise was noted at an altitude 40 km over
Hays island on 19 January, while during this period ordinary winter
temperatures were observed over Churchill station. Warming here
began only on 25 January at the altitude of 45 km. Sherhag 177, in
studying this warming, established that at the altitude of the 25 mb
isobaric surface the thermal region shifted west by northwest. The
thermal region at this level was discovered over Central Europe on
25 January. Later, it gradually shifted to the North Sea, on 30
January it reached Iceland, and then crossed North America.

Warmings in the stratosphere occur infrequently also in summer, -
however they are not as extensive as in winter. According to the
data of Sherhag 1177, abrupt warming began over Berlin on 7 July
1958 at the 20 and 25 mb isobaric surfaces; the abrupt warming
reached its culmination on 10 July. During this period the air
temperature rose 50, then began to decrease, and reached its
initial values. This pattern is characteristic for observations
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at a certain fixed point. In reality, the process of stratospheric 
warmings is highly complex and is associated with the radical':
arrangement of the thermobaric field at all altitudes.

Abrupt warmings in the stratosphere are not the exclusive
feature of the polar latitudes. They penetrate the temperature
latitudes all the way down to the 50-450 parallels. Cases in
which warming was distributed even to 300 N. Lat have been recorded.

Significant transformations of the pressure field are accom-
panied by abrupt Iemperature rises in the perio of winter warmings
in the stratosphere. Cases have been recorded when as the result
of abrupt temperature rises, the winter cyclonic type of pressure
field in the stratosphere was replaced with a summer anticyclonic
type.

Frequently a disruption in the stratospheric cyclone and its
breakup can be seen, as well as a cold cell, into two separate
cyclonic vortices, one of which is in the temperature latitudes,
and the other in the subpolar. At the same time, the Pacific Ocean
and Atlantic nticyclones become much stronger and are shifted
northward. During the period of warmings in the middle strato-
sphere, the air temperature above several stations in Canada rose
65-700 C in five days, as a result of which the altitude of the
10 mb isobaric surface increased more than 800 m in the center of /28
the Atlantic anticyclone. A maximum increase in the altitude of
this isobaric surface was observed over Greenland and amounted to
2400 m zLj_7. At higher levels, there is any more sizeable rearrange-
ment of the pressure fields. At the altitudes 40-55 km, anticyclones
can merge into a single system lying where there hadbeen a cyclonic
vortex before the warming. The winter type of th& pressure field
is replaced by the summer /92/.

As a result of the significant rearrangement of the thermo-
baric field in the stratosphere during the period of winter abrupt
warmings, there is a sharp increase in air density. An example
of this can be taken as the warming in January 1958, when the air
density over Greenland rose 13% at the altitude 29 km (Table 1.6).

TABLE 1.6. TEMPERATURE AND DENSITY OF AIR DURING
A WARMING PERIOD IN THE STRATOSPHERE OVER CHURCHILL
STATION IN JANUARY 1958 (AFTER I. P. VECHKANOV)

Meteorolo- Date 1 4 1 5 1 6gical I element 2 5 6 f

t C 27/1 -55 -62 -71 -59 -33 -17 -13 -17 -23
2911 -55 --65 -65 -23 +10 +17 + 9 -4 -16

P g/m 27/1 85,0 40.2 18.7 7,98 3.51 1.61 0,85 0,45 0,239
29/1 84.0 40.2 17,6 7.30 3.51 1.87 1.10 0.65 0.363
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From Table 1.6 it follows that in two days the air density
increased 16% at the altitude 45 km, and 52% at the altitude 60 km.
Cases were observed when during warming periods the air density
at the altitude 50 km rose 70-80%, and sometimes 100%.

There are two hypotheses accounting for the cause of abrupt
winter warmings in the stratosphere. The first of these is that
of Sherhag §i17, 1187 and states that strat6sphere warmings are
a consequence of the manifestation of solar activity in the atmo-
sphere. Sherhag correlated the trend in the density of the earth's
magnetic field, which depends on solar activity, with temperature
in the upper atmospheric layers and determined that a fairly close
relationship is observed between them. In addition, it was found
that during a period of intense warming in the atmosphere occur-
ring in January 1958 there was an increase in the deceleration of
the second artificialjearth satellite, which was determined by
the increase in air density at the satellite altitudes.

The presence of a correlation between solar activity and
changes in temperature and pressure in the stratosphere was confirmed
also Iby other investigators TO, 34, 40, 41, 66, 111, 1167. They
maintained that the cause of the temperature rise during periods
of abrupt warming is the heating of gases constituting the atmo- /29
sphere as a Jresult of the absorption of particles of solar
origin penetrating the stratosphere during solar flares.

The second hypothesis can be called the advective-dynamic
hypothesis. Advocates of this hypothesis Z6, 57, 807 dispute that
direct solar manifestations exisp in the mesosphere, stratosphere,
and troposphere, asserting that the buildup of winter stratospheric
warmings is affected jointly by vertical and horizontal air move-
mentis. In investigating the 1957 warmings, Craik and Lateev /917
calculated the vertical movements over the North American conti-
nent and the adjoining regions of the Atlantic. As shown by cal-
culations, the maxima of the descending air motions were observed
in the region of the Great Lakes at the 25 mb isobaric surface on
4 February (8 cm/sec), at the 50 mb isobaric surface on 6 February
6 cm/sec , and at the 100 mb isobaric surface on 8 February
(4 cm/sec). The descending air current spread over vast areas.
Even when there were descending motions of lower magnitude (3 cm/
sec), according to the study by M. V. Shabel'nikova /07, with
a vertical temperature gradient 0.40/100 m observed on the average
in the stratosphere, the adiabatic temperature rise was 2500C per
day in the lower stratosphere and 36 0 C in the higher layers.

After a region of warm air forms in the stratosphere under
the effect of the descending movements, advective trans ort takes
on high significance. In the lower stratosphere by the end of
the warming period this can amount to 13-170 C per day 5657.
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The above presented results account mainly for the buildup
of atmospheric abrupt warmings and not the cause of this phenomenon.

At the present time the concept Z~- that there is a relation-
ship between stratospheric warmingsiand large-scale macroturbulent
formations which arise in the troposphere and then encompass the
stratosphere by penetrating increasingly higher layers is contin-
uing to be developed.
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CHAPTER TWO /30

STRUCTURE OF WIND FIELD IN THE TROPO-
SPHERE, STRATOSPHERE, AND MESOSPHERE

2.1. Wind Regime in the Troposphere, Stratosphere, and Lower
Mesosphere

Characteristics of wind field in the troposphere, stratosphere,
and mesosphere can be judged from the structure of the pressure
field, which indicates that the westerly transport of air masses
predominates in the troposphere of the northern and southern hemi-
spheres in the middle and high latitudes in winter and summer;
this air-mass\transport is perturb d in places by acquiring a
northerly or southerly component." This becomes manifested in
maps of baric topograjphy in the form of troughs and ridges.

The velocities of the westerly flow in winter and summer differ,
especially in the northern hemisphere. In a map of the topography
of the 500 mb surface, the horizontal gradients of the geopotential
have a considerably smaller value in summer ihan in winter. In
the transitional seasons intensive westerly air flows also predo-
minate in the troposphere.

The structure of the wind field in the troposbhere is inhomo-
geneous. This inhomogeneity is manifested,'in that the,:/:wind velo-
city as a rule rises with altitude in this atmospheric layer. The
maximum wind velocities are usually observed close to the tropopause.
In addition, the wind velocity changes with latitude, rising or.
falling with increase in the latitude. Thus, close to the tropo-
pause there arise zones in which the wind velocities reach consid-
erable values. These zones are relatively narrow in width and
relatively long in length and are cdlled jet streams.

Jet streams in the troposphere are caused by the large contrasts
in temperature and lying in the zone of transition from the high ''
cold cyclo es to the warm high anticyclones. From the energy point
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of view, jet streams are zones of maximum reserves of kinetic
energy. Wind velocitiesl in jet streams usually exceed 30 m/sec,
sometimes reaching 70-00 m/sec and higher.

Study has shown 1117 that in the northern hemisphere four
planetary high frontal zones are observed: the arctic, the /31
northern of temperate l1titudes, the southern df temperate lati-
tudes, and the subtropical. In winter the first of these is
located on the average around the latitude 680 and has a mean
wind velocity along the zone axis of 23.4 m/sec. The northern
and southern planetary high-altitude frontal zones are noted at
the latitudes 56 and 390, with mean wind velocities along the
axes of 38.6 and 55.8 m/sec, respectively. The subtropical frontal
zone is situated at the latitude 290 with a mean wind velocity
along ]the axis of 64 m/sec.

In summer, the mean latitude of all four planetary high-
altitude frontal zones increases. The high-altitude arctic
frontal zone lies at the latitude 730, the northern of temperate
latitudes -- at the latitude 640!, the southern of temperate lati-
tudes -- at the latitude 48, 'and the subtropical -- at the lati-
tude 41 . Mean velocities alog the axes of these zones are
18.1, 27.9, 37.1, and 44.4 m/sec, respectively.

Relatively weak and unstable streams are observed in the
troposphere in the equatorial and tropical zones. In the lowest
layer, as a rule, easterly currents predominate, changing at
the;alt'Itudes 5-10 km to westerly currents, which in the upper
troposphere often again changing into easterly,

In the stratosphere and mesosphere, the nature of air streams
is also determined by the structure of the pressure field. In
winter, much of the northern hemisphere is covered by a cyclonic
vortex, whose center lies near the pole (see Fig. 1.4). In summer,
in contrast, anti6yclonic circulation is observed over a great
portion of the hemisphere. The center of the high pressure region
also lies over the polar regions (see Fig. 1.3). Thus, in winter
the westerly wind observed in the troposphere continues to predo-
minate in the stratosphere and mesosphere. In summer, the
westerly wind at the altitude of about 20 kp changes into an
easterly wind. The latter propagates up to the upper limit of
the mesosphere.

Characteristics of the annual trend of the zonal component of
wind velocity in the stratosphere, mesosphere, and lower atmo-
sphere well illustrate the time-based vertical profiles (Figs. 2.1
and 2.2) plotted from the data of atmospheric rocket sounding for
30 and 600 N. Lat 1037. In these profiles, isolines above
80 km, being unreliable, are drawn with a dashed line.
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Both at 300 and at':60 0 N. Lat the change of the winter
westerly current into the summer easterly current as a rule occurs
from the top down. It begins in the upper mesosphere at the end
of March to the beginning of April and continues through April in
the lower mesosphere and stratosphere.

A comparison of these results shows that the circulation of
the wind spreads downward in the zone of 600 N. Lat faster than
in the zone of 300 N. Lat. In addition, stronger winds are found
in the zone of 300 N. Lat than in the zone of 600 N. Lat. The
autumn restructuring of the wind field occurs in an especially
short time period. Above 80 km circulation and strengthening of
wind occurs again in all seasons. Particularly strong winds in
the lower thermosphere are observed in summer.
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The vertical time-based profiles of zonal components of wind /33
velocity show the features of periodic oscillations in the velo-
city caused by seasonal changes in the pressure fields. Still,
during summer there are frequent perturbations of the winter
regime of circulation associated with abrupt warmings in the
stratosphere. For example, on 9 February 1962 duringl a warming
period in the 25-50 km layer, strong .westerly, winds typical of
the winter regime were replaced with easterly winds. Over dhur-
chill station on 19 Januark and 19 February 1962 a westerly wind

22



at a velocity of 47 and 30 m/sec, respectively, was observed at
the altitude 37 km j2j7. At the end of January and the beginning
of February, an easterlylwind with a velocity of about 40 m/sec
became evident.

In some cases the disturbances in the usual winter regime of
circulation are manifested not in the circulation of a westerly
wind, but in its abrupt, short-lived weakening, or in weakening
and replacement by the easterly direction only in a small atmo-
spheric layer.

Investigations showed that the stability of the zonal a~d
meridional components decreases with altitude.

Harmonic analysis of three series of atmospheric soundings
made with meteorological rockets over the Eglin (Air Force Base)
in May 1961 and White Sands stations in February 1964 (about

300 N Lat) showed the presence of diurnal and semidiurnal varia-
tions in wind components that were considerable in magnitude.
Table 2.1 resents their amplitudes in the 30-60 km atmospheric
layer /10.

TABLE 2.1. AMPLITUDES OF DIURNAL AND SEMIDIURNAL
VARIATIONS OF WIND VELOCITY (M/SEC)

Zonal componnt I Meridionalrom ponent

Eglin AFB, White- Sands Eglin AFB, White Sands
1k1 May 1961 Feb 1964 ' Ma 191 Feb1964

diur-' semi- diur semi- Idiurna semi- diurna semidiurnal
nal iurnal nal Idiurnqi Idiurna4

30 2,1 0.9 0.2 0.8 1.4 0.8 0.3 1.7
35 0.6 0.8 4.7 2.5 1.9 1.9 2.5 0.8

40 1.9 2.5 5,9 2,3 1.3 1.9 2.0 0.9

45 6,7 1.4 13.2 5.1 7.8 2.4 10.0 2.1

50 3,.4 1,9 3.1 1.6 7.7 2,0 1.9 3.3
55 1.5 2.8 6.4 3.1 4.5 3.1 5.5 1.7

60 2.4 2,0 12.1 3,9 5,4 2.2 1.3 0.3

For comparison, Table 2.2 gives the mean-annual diurnal and
semidiurnal variations of the meridional and zonal components
of wind velocity in the troposphere and lower stratosphere obtained
from radiosonde observations /97.

From Tables 2.1 and 2.2 it follows that diurnal and semidiurnal
variations in wind velocity components are small in the upper tropo-
sphere and in the lower stratosphere to 30 km; this indicates the
relatively low variability of wind with time. A rise in the ampli-
tude of diurnal and semidiurnal variations accompanies a further
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TABLE 2.2. MEAN-ANNUAL AMPLITUDES OFi /34
DIURNAL AND SEMIDIURNAL VARIATIONS IN
ZONAL AND MERIDIONAL COMPOIENTS OF
WIND VELOCITY. LAJES FIELDS, AZORES

(m/sec)

Zonal component ]Meridional component)
H km (

diurnal Jemidiur. diurnal f semidiurnal

9,2 0,2 0.5 0,1 0.1
11,8 0,6 0.5 0,2 0,2
16.1 0.3 0.6 0.3 0,3

20.6 0,2 0,4 0.3 0.4
23,9 0.2 0.7 0.2 0.6
28.5 0.3 0,9 0.7 0,6

increase in altitude, where the diurnal amplitudes as a rule exceed
the semidiurnal. Amplitudes of variations in wind velocity compo-
nents have a maximum at the altitude 45 km, and in winter it is
greater than in summer; and the minimum is at the altitudes 50-
55 km. Higher up, a trend to increased diurnal and semidiurnal
amplitudes is observed. Above 60 km, as will be shown below,
wind variability rises considerably.

2.2. Distribution of Wind in the Layer of Meteor Trails

Meteorological rockets carry outj atmospheric sounding usually
at altitudes to about 60-710 km. In the higher atmospheric layers
measurements of meteorological elements, including wind, occur
only episodically with rockets, and at altitudes exceeding 70 km
they are nearly entirely absent. Accordingly, when investigating
the wind regime in the 80-110 km atmospheric layer, which is
customarily called the meteoric layer, wind measurement by\means
of meteor trails plays an important role 5, 23, 25, 977. This
method as adequate precision O0t only for determining the rate of
transport, but also for investigating the turbulent structure of
wind.

Measurement of wind by means of meteor trails is based on the
following principle. As already mentioned, when entering the
dense atmospheric layer the meteor heatslup strongly and vaporizes,
forming a meteor trail -- a column of highly ionized air. If the 3_5
meteor trail formed is irradiated with high-frequency radio waves,
a point at which"the wave encounters the trail at a right angle
reflects the signal. Under the action of wind, the meteor trail
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is shifted and the total distance from the observation site to
the point producing the reflection changes. This leads to a
Doppler frequency shift, which yields a change in the phases of
the reflected signals proportional to the radial component of
wind velocity. The altitude at which the radio echo appears and,
thus, the wind is measured depends on the wavelength sent by the
radar. For a wavelength of 9 m, for example, it corresponds to
93-95 km.

The meteor layeriscoaracterized by very intense turbulent
mixing. Therefore to analyze the wind regime one must calculate
the mean-hourly wind velocity components, permitting the diurnal
trend of wind velocity to be investigated. Observations showed
that the greatest scatter of wind velocity components occurs in
those hours when there is a change in wind direction. Table 2.3
gives the meridional components of wind velocit from observations
in Khar'kov from 18:00 to 24:00 local time j15 . Positive values
asbefore correspond to the wind direction from south to north.

TABLE 2.3. MERIDIONAL COMPONENTS
OF WIND VELOCITY (m/sec). KHA 'KOV,

1964

Date 18- 199-20 20-21 ' 21-22 22-23 23-24

9/VI 25 5 -12 -28 -40 -45
II/VI 35 -14 -13 -30 -29 -44
13/VI 10 24 13 -27 -33 -43

Harmonic analysis of the mean-hourly wind velocities reveals
the prevalent wind, and also diurnal and semidiurnal variations.
Of greatest interest are the values of the prevalent wind, as well
as semidiurnal variations, since the amplitudes of the latter
considerably exceed the amplitudes of the other harmonics. Investi-
gatians sowed that for Moscow, for example, the amplitude of semi-
diurnal variations ]of the zonal component have their greatest value
in the winter months (32 m/sec) and decrease by a factor of 1.5-2
by June j , 257. Amplitudes of semidiurnal variations of meridional
components in January-February are approximately the same. In March
and May their values decrease to 10-18 m/sec, while in April and
June they approach the winter values for the zonal components.

The zonal components of the prevalent wind reach their maximum
of 20-30 m/sec in April and June. In January and February they are -Z36
1-5 m/sec, and in May -- 12-15 j/sec. The sign of the zonal compo-
nents also changes during the year. An easterly stream is observed
in February and March, in April-May, it changes to the westerly and
again becomes easterly in June.
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Fig. 2.3 gives the average results of wind measurements j57.
From Fig. 2.3 a it follows that variations in the amplitudes of
the semidiurnal harmonics of wind velocity components shows
similar trends in all of the stations listed, that is, their values
are observed to decrease toward spring and summer. From Fig. 2.3 b
it is clear that the behavior of the zonal components (v ) in all
three stations is approximately the same. Similarity can also be
noted in the nature of the changes of meridional components (vm)
as well. Therefore, air currents in the meteor zone over Manches-
ter, Moscow, and Khar'kov have much in common. This is actually
not surprising since the difference between the latitudes of these
stations is small.

These data indicate
Sm/that considerable wind velo-

m, m/sec a cities are observed in the
'30 80-110 km atmospheric layer.

Also, in this layer wind /37
20 3 exhibits greater variability

2 in magnitude and direction,
indicating highly deve\loped

10- turbulen e.

0' I 2.3. Turbulent Motions in
40-  bse ) vm, m/sec Dense Atmospheric Layers

Different air mass
23 transport rates are observed

in the atmosphere at differ-
I ent levels. In addition,

0 air mass transport is
thermally inhomogeneous
both in the vertical and

-20- in the horizontal;direc-
SI , 2 tions. All thfs leads to

I 1 /Y iv v I conditions favorable for

Fig. 2.3. Variations in the Valuesbuildup of turbuence.

of Semidiurnal Harmonics (a) and
Prevalent Winds (b) in the Meteor to the study of two approaches
Zone: to the study of turbulentaZone: 9motions. ,The first is the2. Manchesar tekov, 1960-1961 semiempirical method of3. Moscow 9 9 investigation. In a turbu-

lent flow regime the velo-
city vector at some point
in space changes with time.

Therefore when studying turbulent motions it is convenient to sub-
divide the field of instantaneous velocities into mean velocitiesl
(u'v, )and velocity pulsations (u', v', w'), averaging the
equations of motion in accordance with known principles of
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hydrodynamics. As a result of averaging, term! appear in the
equations of motion containing quantities consisting of the fluc-
tuational velocities

- P (u)", - PU'V, - pw'u';

These quantities express the transport of momentum of indi-
vidual air masses owing to pulsational motions and are called
turbulent stresses. If one considers that there is an analogy
between turbulent and molecular motions, then by using some semi-
empirical relations one can obtain the quantities of turbulent
stresses. For example,

Thus, turbulent stresses can be expressed in terms of charac-
teristics of mean motion. The quantity k characterizes the inten-
sity of momentum transport in the vertical direction as a result
of fluctuational motions and is called the coefficient of -turbulen e.

The semiempirical theory of turbulence came to be applied in
solving a number of problems of atmospheric physics, aerodynamics,
and other sciences. But it cannot be used in investigating
phenomena in which internal structural properties of a flow are
determining. In.ithiscase another approach -- the statistical -- is
used.

Turbulent pulsations are random variables. Therefore to
determine structural features of turbulent flow it is required to
bring in statistical methods of investigation and, therefore, to
describe the structure of turbulent motions the apparatus of the
theory of random functions must be used. A. A. Fridman and L. V. /38
Keller used for this purpose thetcovar:ance )functions

Rk (X I, x-, xS,  M , , ) = 1 - x 2 x- - 2
)ux x,+- + ; x+ 2t+(.

The dependence of the function on the components 12, , g,
expresses the internal structural properties of the flow, while
its dependence on the variables xI , x2 , x , and t characterizes
the difference between the external conditions for different parts
of the medium. A turbulent medium is anisotropic. This means
that in the general case the directions xl, x2 , and x3 are not
equivalent in a turbulent flow. However, within a flow a volume
can be singled out which all directions of the coordinate axes
are equivalent. This property of the turbulent flow is called
local isotropy. If it is understood, in addition, that the
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external conditions under which the motion of the' medium occurs
are thelsame, then the statistical characteristics of the medium
will be identical for all its points and, therefore, the turbulent
flow can be regarded as homogeneous, and the velocity of the
medium can be regarded as a stationary random function. The
.covariance! function for this flow depends only on the difference
in the arguments 7 = t2 - tl

Ru () = M [' (t) ' (t + )l, (2.2)

if the motion at one point is considered, but in different time
intervals, and

R,(1) = M [u' (x)u'(x + I), (2.3)

if the) 'motions considered at different points of the flow separated
from each other by the distance 1 = 12 - 11.

The variables T and 1 are corrdspondingly the time and linear
scales of turbulent motions. -A hypothesis states Ithat turbulent
eddiess, are transported by the mean flow. In addition, it can
be assumed that the time and linear _scales are related in terms
of the velocity of the mean motion I=u1I.

In a study of the properties of the turbulent flow, very
often use is made of the spectral densities of turbulent pulsations,
which constitute a Fourier transform of the covariance Ifunction

2, m (2.4)

where u is frequency..

The dispersion of the turbulent wind pulsations is associated /39
with the spectral density. This relationship has the following
form:

D,,= R, (0) = S () (2.5)

In several cases the structure function

B2(-= M[- ( 2t (t)- U )( (2.6)

is very convenient in characterizing the internal properties of
the turbulent flow.

28



The relationship between structure and covariance Ifunctions
is expressed by the obvious equation

B,() = 2R,, (0) - 2R,, (2.7)

--and--the-relationship__betw.een structure and correlation functions
is expressed by the relation

B1() = (0) - r( (2.8)

The statistical theory of turbulence was elaborated in works
by A. N. Kolmogorov, A. M. Obukhov, M. I. Yudin, J. B. Chaylor,
et al. A. N. Kolmogorov showed j28, 297 that the main energy
source of fluctuational motion is the instability of the mean
motion. The laminar motion of a viscous liquid with characteristic
v and characteristic scale L is steady-state,when the Reynolds
number Re vL , where v is the kinematic viscosity of the liquid,

does not exceed the critical value Recr. If Re > Recr, the motion
becomes unstable. Velocity fluctuations vi arise jin the flow,
whose linear scale is 1. The specific energ of these fluctua-
tions is (vj)2 . Therefore, in the inception of fluctuations in
velocity from the mean value, energy proportional to is

transmitted per unit time. On the other hand, some of the energy
of the fluctuational Imotion is dissipated. This part of the
energy is proportional to L(I Then thecondition for the exis-

tence of velocity fluctuations can be described as follows:

>v
i la

or after certain transformations

t' (2.9)
Re, -L>.

Since these calculations were made to a precision of specific /40
numerical cofactors, it is proper that the solution can be' ritten
as:

Re,Re R. (2 .10)

The number Rel is called the internal Reynolds number. From
Eq. (2.9) it follows that large eddies for which a large Rel is
characteristic arise most easily. When inequality (2.10) is
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satisfied, these large eddies'-becme unstable and pass on their energy
to smaller eddies, which subsequently also 'lose stability. Thus,
the transfer energy from the mean motion to fluctuational motion
consists in the breakup of large eddies into finer ones. Here the
dissipation of energy E is large only for small eddies. If we use
dimensional analysis, we can determine the scale of eddies X whose
fluctuational energy changes into thermal. This scale depends on
the kinematic viscosity and the dissipation of energy

1 (2.11)

In local-isotropic turbulence, as shown by A. N. Kolmogorov
/_97, the following- equality, is valid:

B (1) = C "I (2.12)

in which C is the coefficient of proportionality. This relation-
ship came to be called the law of "two-thirds".

The law of "two-thirds" was fi'st derived by A. M. Obukhov
§F7, 487 by the spectral decomposition of the velocity of a steady-
state turbulent flow. To the law of "two-thirds" there dorres-
ponds a power dependence of the spectral density of turbulent
pulsations on frequency, of the form

S(o) = C, ,"-. I
which sometimes is called the law of "minus five-thirds."

M. I. Yudin /847 investigated the applicability of the law
of "two-thirds" ahd determined the,'effect of anisotropy of turbulent
motions on the correlations Of the wind field/ structure.

If we examine a large-scale flow, even at a distance of about
1 km the moduli of the differences in the wind velocity components
along the horizontal proved to be sometimes less than along the
vertical. However, if we limit ourselves to considering these
differences only in the horizontal direction, we need not take the
vertical inhomogeneity into account. M. I. Yudin obtained the
following structure law for large-scale anisotropic urbulent
motions:

E (P) C pPl (2.13)

where E' (Pl) is the fluctuational energy of horizontal motion; /41
E (P1l) is the fluctuational energy of vertical motion, assumed
constant, if the neighboring atmospheric layers are separated
from each other by di,stapces that are commensurable with the"mixing path"; XI, 3, and C are constants; l1 is a quantity that
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is the reciprocal of the scale of turbulent eddies. This struc-
ture law came to be called the law of "first \power."

Numerous investigations dealt with an experimental check on
the structure laws of turbulent motions, confirming the correla-
tion that had been obtained theoretically. Several methods are
used in the experimental investigation of turbulence, in the free
atmosphere. The greatest use was made of the method based on
employing as the wind gust gauge an accelerograph mounted on an
aircraft. Using acceilerographs recording f g-loads that arise when
an aircraft flies in a turbulent flow, it is possible to determine
the velocities of vertical wind gust.

The paper §Y/ presents a series of structure functions B2 (T)

of vertical wind gusts. The scale of the eddies at which the
structure function reaches saturation is called the characteris-
tic scale. Calculations showed that in 70% of the casesithe Bax
values occur in time interval T har equal to 3.5-7.5 sec, which
corresponds to a linear eddy scale of the 0.6-2.0 km. The struc-
ture function of wind gust is conveniently approximated with the
expression

()= Al". (2.14)

The results of calculating the exponent n showed that its
value on the average follows in the range 0.6-0.8. Thus, the
feasibility of the law of "two-thirds" is confirmed for eddy scales
of the order of 10 km.

Investigations showed Z57 that the characteristic scale of
turbulent eddies depends on the thermal state of the atmosphere,
which can be characterized by the difference of the adiabatic
T a and actual y vertical temperature gradients. Up to an altitude
12 km, this function is determined by the expression

1 .5(TaI
char

The structure of horizontal turbulent pulsations in the 6-12 km
atmospheric layer is investigated by means of a Doppler-systeml
F2, 517. The degree of general perturbability of the wind
velocity field was estimated by means of the relative (with respect
to the mean wind velocity at the given altitude) root mean square
deviation ou

As shown by the calculations, at altitudes 6-12 km and wind
velocities e*ceeding 50-60 km/hr, Q fluctuates in the range 0.05- /44
0.30. It has two maxima, one of which lies in the 7.5-8.5 km
layer, and the other -- in the 9.5-10.5 km layer. The structure
functions of horizontal turbulent pulsations also increase

31



with increase in the eddy scale, and their characteristic scale is
approximately one order greater than the characteristic scale of
vertical pulsations, averaging 18 km. If we approximate these
structure functions by Eq. (2.14), at all altitudes within the
6-12 km layer the exponent n on the average will be clos' to 2/3,
that is, the horizontal turbulent pulsations injthe troposphere
also obey the Kolmogorov-Obukhov structure law.

However, as shown by investigations, the exponent n and the
coefficient A of the structure law of turbulent pulsations depend
on the degree of thermal stability of the atmosphere. The exponent
n drops with increase in Y . The rate of its decrease is large in
the region where n > 0.8, and smaller n < 0.8. The coefficient
A, in contrast, increases with increase in y . This derives from
the fact that as the instability is increased, the rate of dissipa-
tion of turbulent energy rises.
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At the present time much attention is being given to investi-
gating correlation and spectral characteristilcs of turbulent motions.Spectral densities of vertical S and horizontal Su(wind) turbulent

pulsations within this atmospheric layer, 0.2-7 km, obtained by
G. P. Il'in, shown in Figs. 4.4 and 2.5. The spectral density of
the vertical gusts varies over a broader interval than the horizontal
gusts. If t~e spectral densities are integrated over all frequencies,
we can obtain minimum and maximum dispersions of the turbulent compo-
nents of wind velocity. Figs. 2.4 and 2.5 present the root mean
square deviations corresponding to these dispersions.

A detailed study of the energy spectrum of turbulence was made
in jet streams /82, 837. Fig. 2.6 presents in logarithmic coordi-
nates the spectral density in a jet stream)and the altitude 8 km.
The curve in this figure can be approximated with two linear
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segments. In different spectral regions, the spectral density is
described /by different power expressions of the form S_(Q)l'..
For frequencies corresponding to scales less than 600 m, the expo-
nent n = -1.67;. This shows that the energy spectrum for these
scales agrees well with the law "minus five-thirds." For larger
scales, the exponent n = -2.7. The reason for the deviation of
the spectral density from this law in this interval of scale
values is the work that must be done by the turbulent eddies
against the Archimedean forces, as a result of which the kinetic
energy of turbulence for the case of stable temperature stratifi-
cation the atmosphere changes into potential energy /827. For
small-scale eddies, the energy loss in work done against the
Archimedean forces is negligibly small, while large-scale eddies /45
can lose a considerable fraction of the energy. Here the energy
equilibrium within the inertia interval is disrupted, which is the
reason for an increase in the slope of the curve in the region of
large scales.

Measurements of turbulent motions were organized in the Central
Aerological Observatory using radiosondes with an accelerometer
accessories especially designed for this purpose. The observations
were taken in Moscow, Sukhumi, and Tashkent. The resulting data
permit several characteristics of wind gusts to be determined.

2_ 2 Fig. 2.7 shows the
S ,Q l incidence of turbulent

- rad/r pulsations with altitude.
The incidence was calculated
for each kilometer atmospheric

~S() -2* 7  layer, and the latter was
703_ assumed to be turbulent if

a layer of turbulence 50 m
:thick was encountered in it.
Incidence values obtained

702 with the aid of radiosondes
were compared with incidence
values determined by air-
craft sounding of the atmo-

10 S52~) .-S 7  sphere (curves 2 and 3 in
Fig. 2.7 a). It turoed out
that the incidence of
turbulence calculated from

'0, _ aircraft measurements is
6370 630 63 63 m smaller than the incid6ce

10-3  10-2 1-' o radm oabtained with radiosondes
(curve 1 in Fig. 2.7 a).

Fig. 2.6. Elergy spectrum of Averaged over the year and
in all seasons, the inci-turbulence occurring when jet in all seasons, the inci-

streams intersect (7 February dence of turbulent pulsa-
1962) tions falls off with altitude,

1962) reaching a minimum at the
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altitudes 7.5 km in winter (curve 1 in Fig. 2.7 c)J and 10-12 km in
the remaining seasons. Then an abrupt rise in incidence occurs. /46
Averaged over the year (Fig. 2.7 a), autumn (Fig. 2.7 b) and winter
(Fig. 2.7 c) its maximum is noted at an altitude of about 12.5 km
andireaches 50, 50, and 70%, respectively. A further increase in
altitude is associated with the decrease in the incidence of turbu-
lenceL An exception is represenged by spring (Fig. 2.7 d) when a
zone of high incidence of about 60% is observed in the 15-25 km
layer. Turbulent motions weaken at an altitude of about 30 km.
However, in winter the. second maximum lies in this altitude. Studies
showed that!oer Moscow, for example, in 30-40% of the cases moderate
turbulence is encountered in the troposphere in summer, but in winter
and spring -- in the stratosphere in the 15-20 km layer. Also in
this layer is intense turbulence observed in 8% of the cases.

2,

0 0
30

S80 0 40 80O 40 80 040 80 0 0 80%
I --- I ..........

Fig. 2.7. Altitude distribution of inci-
dence of turbulence over the year (a),
autumn (b), winter (c), spring (d), and
summer (e)
1. Moscow
2. Tashkent
3. Sukhumi

Radiosonde measurements made itpossible to determine the
thickness of the turbulence layers. The greatest thickness of
layers with turbulence occurred over Tashkent, and the thinnest
-- over Moscow. Aircraft studies confirmed the dependence of the
incidence of large thicknesses of layers with turbulence on lati-
tude. Whereas in the upper and middle latitudes the incidence of
turbulent layers more than 1000 m thick was 10-15%, in the southern

35



latitudes it rose to 30%. In the high and middle latitudes the
maximum incidence occurred for turbulent layer thicknesses of 300-
600 m, and the lowest -- for thicknesses of 400-800 m.

A characteristic feature of turbulence is its patchy character.
This is especially true of the upper troposphere and the lower strato-
sphere. Zones of turbulence are extended horizontally up to 100- /47
150 km.

The characteristics of turbulence examined below apply to
the troposphere and the lower stratosphere. The development and
improvdment of atmospheric rocket sounding permitted experimental
study of turbulent eddies throughout the atmospheric layer. To
obtain characteristics of turbulent motions in this case, a sliding
mean of the horizontal components of wind velocity were calculated
by averaging wind profiles for some interval of altitude H, using
the equality

v,(z, v,(z, , /)dz, i (2.15)

, , )=2

in which vi(z, h, t) is the i-th velocity component (mean) of the
wind, measured at the vertical interval h. Therefore, turbulent
components of wind velocity can be calculated with the equality

V, (Z, , ) = V,(8, t, h) - V,(, i , (H) (2.16)
Equality (2.16) makes it possible to obtain a set of pulsations

of wind velocity components for each wind profile, on the basis of
which the correlation function

M [;v(z,)v' t) (z e t) (2.17)

can be obtained, where E) is the altitude interval, having,/the signifi-
cance of turbulence eddy scale.

Thel set of correlation functions obtained for individual wind
velocities can be averaged;. Thus, it is possible to obtain a time-
averaged correlation function of the turbulent wind velocity compo-
nents, for example, forlea h season -

N

I --1 (2.18)r ( -) = I- r; ( t.
jii

If we apply Fourier transfo m (2.4) to equaljity (2.18), we get the
energy spectral pulsations of wind velocity components.

The energy spectra of turbulent components of zonal nd meri-
dional wind velocity components in the atmosphere to an altitude of
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50 km, based on the above-presented method, were calculated by
Kao and Sands 1017 by processing 210 wind profiles obtained with'
the atmospheric rocket sounding condjucted over White Sands station
in the period from January 1963 to December 1964. These profiles /48
include 21,00/0 wind measurements. The energy spectra are shown in
Fig. 2.8, from which it follows that normalized spectral densities
of pulsations in zonal and meridional wind velocity components are
similar and proportional to Q-2. The maximum turbulent energy
occurs at frequencies in the range 0.03-0.06 km-1 (eddy scale
2.5-20 km).

Table 2.4 gives the dispersions of turbulent components of
zonal v and meridional u components of wind velocity for seasons
and averaged over the year.

TABLE 2.4. SEASONAL AND MEAN-
ANNUAL DISPERSIONS OF TURBULENT
WIND VELOCITY COMPONENTS, m2/sec 2

Season '  M [(v') - (u')I2

: Winter I 73,62 29.57
Spring 56,61 20.96
Summer 23.06 18.63
Autumn 7 48.68 24.09

Year ) 50,49 23.32

From Table 2.4 it follows that dispersions of the fluctuations
of zonal components exceed by more than a factor of 2 the dispersions
in the fluctuations of meridional wind velocity components. An excep-
tion is represented by the summer season, when they fare approximately
the same. f Turbulence in this atmospheric layer' is most developed
in winter. The smallest dispersions \are observed in summer.

In Fig. 2.9 is,:i.shown the altitude distribution during the year
of the kinetic energy per mass of imean and fluctuational horizontal
motions. Fig. 2.9 traces two maxima of eddy motions: at an alti-
tude of about 10 km in autumn and at the beginning of winter, and
at an altitude of about 46-48 km in winter. The first of these
evidently is associated with the tropospheric jet stream. The
region of minimum kinetic energies of eddy motion lies in the middle
stratosphere, where its center occurs in summer and is observed at
an altitude of about 22 km. It indicates the low variability of
the easterly wind in summer in the stratosphere.
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The kinetic energy of the mean motion has three maxima. he
first pf these is detected in the stratosphere at an altitude of
12 km and relates to the autumn-winter tropospheric jet stream.
The second maximum in autumn and in the beginning of winter lies
at the altitude of 50 km. IIt characterizes the winter jet stream.
Finally, the third maximum is noted in summer in the stratosphere.

By comparing the energies of the fluctuational and mean motions,
we can see that the largest kinetic energies of eddy motion lie /49
close]to the maxima of kinetic energ of the mean motion.

In the mesosphere and the lower part of the thermosphere,
turbulence is studied by radar observations of meteor trails. As
indicated in Section 2.2, meteors entering the atmosphere of the
earth heat up due to friction and vaporize in the 70-110 km layer.
As a result, a meteor trail is formed, which is a column of ionized
air. The radial electronic density 6 r in the trail is determined
by the law

- 27,dt e

in which a is the linear electronic density, t is the time after
trail formation, and dl is the coefficient of molecular diffusion.
This concentration persists during avvery short time interval.[
Later, the meteor trail rapidly deforms under the effect of turbu-
lent eddies. Therefore, itsr electronic density becomes less.
In addition, turbulent eddies produce inhomogdneities of electronic
density, which bring about radio wave scattering. As a result,
a Doppler frequency shift occurs, whose value is proportional to /50
the radial component of wind velocity. Thus, it now begins possible
to determine the horizontal and vertical turbulent pulsations and
to estimate how the characteristics of turbulent eddies, for example,
their linear and time scales /L6,. 87.

If it is assumed that the critical Richardson criterion
R1 = 2- 19)

• dz)

where c is the wind velocity vector is equal to unity, then

Since dc/dz has the dimension of angularve l -city, we can
write

where t is the characteristic time scale of large eddies. Then
Eq. (2.19) becomes
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If we denote the specific o I I I I

energy of large eddies per 1 in i V VI V// VII A A /J XI

unit time by El, the energy
during the time t1 is Fig. 2.9. Altitude distributioni

cj= E / (2.21) during the year of the kinetic
energy per unit mass of mean (a)

where c' I s the velocity of and fluctuational (b) horizontal
turbulent pulsations.

The linear scale of large eddies can be obtained by the formula

L c;1. \(2.22)
Eq. (2.11) was used to calculate small dissipating eddies.

From this formula it follows that

( ) and t,= (2.23)
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Here c' is the velocity of pulsations in small eddies and t2 is2 is
the characteristic time scale.

Assuming that the velocity of horizontal turbulent pulsations
of large eddies is taken as the mean value, 35 m/sec,LBo6ker /877
obtained the following characteristics of large eddies ~'t the
altitude 90 km:

tl = 50 sec, E1 = 25 W/kg,

L1 = 1.6 km, dc/dz = 20 m/(sec-kg).

Given the condition V = 4 m2 /sec, characteristics of dissipating /51
turbulent eddies were also determined, as follows:

c = 3 m/sec, t2 = 0.4 sec, and L2 = X = 1.3 m.

Greenhow Z5-977 made a statistical treatment of radar sound-
ing of 900 meteor trailsJ He showed that in the 70-110 km ayer
very large vertical wii~d shears were observed.. In this layer
there were wind shears from 0 to 144 m/sec per km of altitude.
Their median vias 10 m/(sec.km). Wind shears of this value were
obtained also by other investigators.

2 2 8(d ) m/sec2

i 8' (dh) m2/ ec 600
1800

1200 -
600 

200[

60 120 180 2d km ' 2km

Fig. 2.10. Structure func- Fig. 2.11. Structure function
tion of horizontal pulsa- of horizontal pulsations in
tions in wind velocity in wind velocity in the meteor
the meteor trail layer as trail layer as a function of
a function of horizontal vertical scale of eddies
scale of eddies

In the meteor trail layer the root mean square values of
horizontal turbulent pulsations vary from 15 to 45 m/sec, and their
median is 25 m/sec /~5-97. The maximum value of vertica turbulent
pulsations does not exceed 107-15I/sec, with a mean of 2 m/sec.

Horizontal and vertical scales of large eddies can be estimated
if we know the correlation functions. The correlation functions
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of horizontal turbulent pulsations were obtained by Greenhow
Z75-9z7. Heestablished that the horizontal scale of these turbu-
lent pulsations is 150 km or 6000 see, an) the vertical scale
somewhat exceeds 7 km. The scale of the lower part of the spectrum
of turbulent eddies is about 30 m. Thus, the scales of large and
small eddies, as well as their other characteristics are under-
stated by Booker. The above-presented data permit the structure
of turbulent motions in the layer of meteor trails to be investi-
gated. Knowing the nature of the correlation functions and the
dispersions of the turbulent wind velocities, for example, using
Eqs. (2.7) and (2.8) we can calculate the structure functions ,
corresponding to them. Plots of these functions are in Figs. 2.10
and 2.11.

As follows from Fig. 2.10, beginning with the scale of 5 km
Yudin's law of "first power" is observed. Thei structure function
reaches saturation approximately at the scale 180 km. This is
also confirmed by calculations. If we approximate the structure
function with equality (2.14), calculations showed that the
dependence of the structure function of horizontal turbulent pulsa-
tions on the horizontal eddy scale dh is of the form

B I(1h) = 9dh, (2.24)

and the dependence of the structure function of horizontal pulsa-
tions on the vertical eddy scale d is described by the expression

B (lv) = 12Odv.  (2.25)

The structure function of turbulent wind pulsations is porpor-
tional to the specific function energy of the turbulent flow.
Therefore, if the "first power" law is satisfied, the coefficients
in Eqs. (2.24) and (2.25) have the meaning of the gradient of this
energy. Their ratib shows by how many'ltimes the energy of turbu-
lence changes more rapidly in the vertical direction compared with
the horizontal, that is, their ratio characterizes the anisotropy
of the turbulent flow. This ratio obviously is equal to 14.

Turbulent eddies with a scale smaller"than 5 km obeyjanother
structure law. In accordance with the study /0 7, the Kblmogorov-
Obukhov law of-"ctwothirds" is this law.
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CHAPTER THREE

VERTICAL STATISTICAL STRUCTURE OF PHYSICAL
PIARAMETERS OF AIR IN DENSE ATMOSPHERIC LAYERS

3.1. Characteristics of Vertical Statistical Structure of Physical
Parameters of the Atmosphere

Temperature,_ pressure, and density of air and winds are random
functions of space and time. Therefore a complete description of
the strpcture of fieldsj'of these meteorological elements must be
based on investigating their space-time ) statistical characteris-
tics. This investigation is possible when founded on a large
series of values of these atmospheric parameters at different
points in space and in different time intervals. Unfortunately,
quite often this information is lacking. This is particularly
true of atmospheric rocket sounding data. Atmospheric rocket
sounding at present is the only method by which measurements can
be extended to a large fraction of the lower 100-km atmospheric
layer. However, rocket sounding is currently carried out from
a limited number of proving grounds and at different periods of
time. Accordingly, based on rocket sounding data it is possible
only to obtain characteristics of the vertical statistical struc-
ture of fields of the physical paraneter of the atmosphere
averaged over large time intervals . In this case, the temperature,
pressure, and density of air at some fiked level are viewed as
scalar, and the wind velocity values -- as ', vector random variables.

The fullest characteristic of a random function y is its
stochastic description by means of laws of distribution or the
functions of the distribution of the densities of probabilities
f(y). In several cases, for qractical applications it proves to
be sufficient to specify random functions and variables by deter-
mining simpler characteristics -- the moments of random functions
and variables, which are less complete characteristics.
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The physical parameters of the atmosphere, such as temperature, /54
pressure, air density, and wind velocity components, are distributed
as shown by-investigations according to the normal law. Therefore
the statistical properties of fields of the physical characteris-
tics are quite fulpy described by the mathematical expectations

M [Y)= yf (y) dy (3.1)

and by the covariances

Ry (' t S [YI - m,,[2y2 - m f(Y y , ,y, t 2 ) dt, dt 2 ,/ (3.2)

where tI and t2 are certain arguments.

The covariances are constituent elements of the covariant
matrices. Let us examine the covariancelmatrices of temperature,
pressure, and air density as applied to the problem of investi-
gating the vertical statistical structure of the fields of these
atmospheric parameters.

The statistical characteristics of the meteorological fields
are calculated based on data on temperature t(Hi) and pressure
p(Hi) for a series of levels Hi . They make it Ipossible to
calculate, using the equation of state (1 .f) the density 'of air
at the same levels P(Hi). Thus, in the specific case there are
values of t, p, and p that can be considered as a set of compo-
nents of the n-dimensional random vector X:

t (H,)

p (H,)

X = p (n = 3m). (33)

p(Hm)

*r (H,)
, p (H,)

P(HI)
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Let us compare with this vector the vector of mathematical /5
expectations mX o the same variables.

ntM (H,)

m, (H,)

m, (H,)

m, (H)..

m, (H,)
mp (H.)

Then the generalized covariance 'matrix o2 thermodynamic charac-
teristics of atmosphere can be obtained as follows:

R= M [(X - m) (X - m (35)

where M is the operation of mathematical expectation, and * is
the operation of matrix transposition.

The generalized Imatrix (3.5) from it it i\s expanded, is a
complex matrix, that. can be partitioned into nine blocks:

IR,, R,, R.t;pt; Rpp R ip

Rx= .R ' (3.6)--- --- --- ---i . . . . --- ----

R R R

The blocks lying along the principal diagonal of matrix (3.6)
are autocovariance )matrices of temperature, pressure, and air den-
sity, while the remaining blocks are Ireciprocal covariance matrices
of these meteorological elements. Autocovariance fmatrices are
symmetric matrices, while reciprocal covariance matrices are asym-
metric, where

R,, = R , R, = R"; R = r

Hence it follows that if we know the blocks lying along the
principal diagonal and above it, the generalized matrix (3.6)
becomes whol4y defined.
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Based on matrix 3.6 we can obtain the correlation matrix corres-/5 6

ponding to it

r,- ri ep- r,

r r Pp t r (3-7)
r r rpp rp

whose blocks are reciprocal and autocorrelation matrices. There are
also asymmetric and symmetric matrices, respectively. The elements
of the block matrices comprising the matrices 3.6 and 3.7 are asso-
ciated by the equalities

(H, H') Rt (H, H')
Var (H, H) R t (H', H') (3.8)

r, (H, H) = Rtp (H, H-') (3"9)

- rRt (( , H) Rp HH') (3.10)
r '((, i') =

SVRtt (H, H) RP(H', H')

and! so on, where the I'elements under the radical sign are
situated along the principal diagonals of the corresponding blocks
and constitute dispersions.

The wind factor can be represented as two components, one of
which is directed along the parallel, and the secbnd -- along the
meridian. As indicated in Chapter Two, these components of wind
velocity lie along the axes of a coordinate system, which is taken
as2 standard in meteorology, and the components themselves are called
zonal and meridional.

Let us denote the components of the wind velocity vector by''
u and v, respectively, and let them represent their set in the
form of the n-dimensional random vector C.

u (H,)

u (H,)

(3.11)
C= v(H,) (n=2m).v(H1 )

v(H,0)

If we compare the column mtrix with )the corresponding matrix /57
of mathematical expectations
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m. (H1)
m. (-)

S .(Hm) (3.12)mc- m, (Hi)
m,,(H,)

m, (H,)

the covariance 'matrix of the vector can be ob ,ained as follows:

(3.13)
Rc= M [(C -mc)(C -mC)*. 

3

Expanding matrix (3.13), we will get the block matrix

- -- ----- (3.14)

The blocks of matrices (3.14) lying along the principal diago-
nal are symmetric autocovariance Imatrices of the wind vector compo-
nents. The remaining two matrices are asymmetric reciprocal covariance
matrices and have the property

R,, = R.*, *

Matrix (3.14) makes it possible to obtain the correlation
matrix

rC= ... --- (3.15)

wh-ichKhas the same characteristics as the matrix (3.14). Between
the elements of the blocks of matrices (3.14) and (3.15) there
exists the relation -

r,,. (H, H') 
ru(, H') Ru (H, H) Ru (H', H') (3.16)

Rvv (H, H')
r (H, ') (HH) (H', H')

,(H, IV)
I' R= (H, () Rv , ) ( 3.18 )

The dispersions of the wind vector components are under the /58
sign of the radical in expressions (3.16)-(3.18).

The elements of the above-considered covariance Imatrices 9re
calculated from experimental data using the familiar formulas:

46



-xy (---y,%,,y (.19)

R --D = - - M.
Rx.- x==Vn-x V'm" . (3.20)

fx n (3.21)

The results of American rocket sounding of the atmosphere in
the period 1961 to 1966, pertaining to the US proving grounds
listed in Table 3.1, served as the main starting material for cal-
culating the characteristics of the vertical statistical structure
of the above-indicated meteorological fields.

TABLE 3.1. STATIONS OF ATMOSPHERIC
ROCKET SOUNDING WHOSE DATA UNDER-

WENT\_PROCESSING

Station 2 Latitude Longitude (West)

White Sands 32023 ,N 106029'
Point-nMugu 34 07 119 07
Cape Kennedy 28 14 80 36

Wollops Island 37 50 7529
Churchill ; 58 47 94 17
Fort Greeley / 64 00 9417
Ascension Island 07 59 S / 14 28

All the rocket sounding data were divided ihto two latitudinal ]
groups. The first group included th', data of the stations White
Sands, Point Mugu, Cape Kennedy, and Wollops Island. The second
group comprises the results of rocket launches at the proving
grounds of Churchill station and Fort Greeley. In the following
we will call these latitudinal groups the middle and high latitudes,
respectively. Ascension Island is in the equatorial zone. For the
investigation of the vert-ical statistical structure of the fields
of temperature, pressure, and air den ity, 592 cases were used, and
for t'he i4vestigation of the vertical structure of the wind field
-- 1020 cases. These rocket soundings together with data of syn-
chronous radio sounding supplementing them in relation to iatftu-j_
dinal groups and half-year periods into which the starting data
were subdivided dealt with the layer up to 50-70 km. The period
of time from -A-il to October refers to the cold half-year, and
from October to April refers to the warm half-year.
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The rocket sounding data used for the statistical interpreta-
tion as a rule were more than two days apart. To investigate the
diurnal variability of the air density, a number of observations
taken a day apart were examined. These data numbered 72 in the
warm period, and 82 in the cold.

The precision of the measurements of atmospheric parameters
was characterized by the root mean square error of the individual
measurements. The meteorological rockets took measurements of the
meteorological elements with the following precision: the root
mean square error of the pressure measurements was 4%; the root
mean square error of the temperature measurements was 2-30C. As
a result, the air density based on rocket sounding was determined
to an average position of 5% 1907. The root mean square error of
wind velocity measurement in the atmospheric layer 10-70 km was
0.5-2.5 m/sec, if the wind measurements were made by means of a
parachute device and falling spheres, and about 10 m/sec when the
wind was measured by radar observations behind the clouds of
metallized dipoles Ji05, 107, 1087.

3.2. Altitude Distribution of Mean Values of Temperature, Pressure,
and Air Density in the Dense Atmospheric Layers

To expand the characteristics of the verticalx statistical struc-
ture of the fields of temperature, pressure, and air density, let
us consider the altitude distribution of several statistical charac-
teristics of these."physical parameters of the atmosphere in differ-
ent latitudinal zones and .half-years over the North American continent.
A comparison of these characteristics with those obtained for I
other regions in the northern hemisphere shows that the general
regularities of the ver ical structure have no essential differences,
although there are some\differences in details.

The altitude distribution of air temperature averaged by half-
years and latitudinal zones is shown in Fig. 3.1 for the North
American continent; from this figure it follows that the vertical
profile of the mean temperature in the middle latitudes differ to
a considerable extent from the vertical profiles of the mean tem-
perature of the upper latitudes.

The profiles of thd half-year averaged temperature agree closely
with familiar concepts of the distribution of air temperature in
the dense. atmospheric layers, which are briefly expounded in Chapter
One, concerning the difference between the vertical and horizontal
gradients of temperature in the cold and ,warm half-years.
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Fig. 3.1. Altitude distribution of air temper-
ature averaged by half-years and latitudinal

zones:
Middle latitudes: warm pe.iod (1) and cold period

period (2)
Northern latitudes: warm period (3) and cold

period (4)
Equatorial zone (5)

In addition to the mean temperature, of high interest are data /61
characterizing fluctuations in air temperature at different alti-
tudes. Fig. 3.2 a shows the deviation from the mean value of extre-
mal temperatures in differj'ent latitudinal zones and different half-
years observed in the-perid 1961 to 1966. -From Fig. 3.2 a it
follows that in the stratosphere and lower mesosphere the tempera-
ture can differ 20-45oC from the mean value. The largest positive
temperature deviations occur ab6ve 20,_m in the cold half-year.

They occur in the winter months and are associated, as already
noted above, with abrupt warmings in the stratosphere.

Large fluctuations in temperature in tIese atmospheric layers
are indicated by the fairly high values of the root mean square
deviations of temperature, shown in Fig. 3.2 b. From this figure
it follows that the largest root mean square deviations of temper-
ature observed in the cold half-year in the northern latitudes in
the 30-60 km layer. Above 50-60 km, the root mean square deviations
of temperature in the northern latitudes decrease sharply, while
in the middle latitudes they remain nearly unchanged.
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Fig. 3.3 presents
the deviations of the
mean temperature values

i H from the temperature
n ( f 2 based on the 1964 stan-

12 43 H'km 1 2 dard atmosphere (SA-64).
. 4 / 2 Fig. 3.3 shows that

a) bI) the mean temperature
5 values as a function

50 5 of region and half-
(. lyear can differ widely

, () 1 from the standard
S/ values. In the tropo-

I ).t //sphere, the mean tem-
0o so perature is lower

V than the standard in
the upper latitude ,

20 20 - where the difference
/ between them in the

cold-half year based
o0 ,- on absolute magnitude

1) ( at the altitude 3 km
I exceeds 2000C, while

-10 0 o zoat 2 o ' 4 12 t the mean temperatures
above the standard

Fig. 3.2. Deviations from the rean value in the middle altitudes.

of extremal temperatures'(a) and root At the altitude 12 km
mean square deviations from temperature the mean temperature
(b). The symbols are as in Fig. 3.1. in both latitudinal

zones and half-year
is nearly identical
and is equal to the

standard value. In the 12-25 km atmospheric layer in the upper
latitudes the stratosphere proves to be warmer than the standard
value. But in the cold half-year the mean air temperature is below'-

the standard value. Only in the lower mesosphere are positive
deviations of temperature from the standard value observed, and
they increase sharply with altitude, reaching 270C at the altitude /62
65 km.

In the cold half-year on the average at all altitudes the
atmosphere in the high r latitudes is colder than the standard
value. The maximum value of the negative temperature deviations
occurs at the altitde- 4 km and is 170C.

Table 3.2 presents the mean air temperatures and the tempera-
ture based on the CIRA-1965 Standard Atmosphere. The mean temper-
ature values are taken from collections of atmospheric rocket
sounding data /1207. They were calculated for the period 1961 to
1965.
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Analysis of the data in
H, k Table 3.2 shows that above 30 km

Skm / 2 there most of\the levels the

60- mean temperatures for both sta-
tions prove to be lower than
the temperature based on CIRA-
1965. An exception is repre-

/ sented by the temperature in
May at the White Sands station
and also in May/ and Qcober at

(the altitudes 60 km in the sta-
tion Fort Greeley.

The mean atmospheric pres-
sure depends to a large extent
on the time of the year and the
latitude. We compare the alti-

0 tude distributions of the mean
pressures for the warm and cold
half-year (Fig. 3.4), we can

-20 - 20t conclude that the largest values
of the mean pressure are observed
in the zone 30-400 N. Lat in the

Fig. 3.3. Deviations of mean \ warm half-year, and the smallest
air temperature from standard -- in the upper latitudes (50-
value: 600 N. Lat) in the cold half-
Symbols as in Fig. 3.1. year. The difference between

TABLE 3.2. MEAN VALUES OF TEMPERATURE t AND TEM-
PERATURE BASED ON CIRA-1965 (0C)

White Sands / Fort GreeleI
H May October, Maj i Octobert

km - 7 CIRA-1965 7 CIRA-965 7 jCIA-1965 7 C I
RA-1965

30 -41.1 -39.0 -45.8 -40.0 -45.3 -50.0 -51,5 -49.0

40 -- 12.6 -16.0 -23,5 -23.5 -13,4 -19.0 -36.3 -27.0

50 4.9 - 2.0 -41 1.0 2.9 - 11.0 -13.4 - 4.0

60 - 6,1 -21.0 -11.7 - 4.0 - 4.4 -18.0 -11.8 -31.0

them at the altitude 3 km is 28 mb,"at- the altitude 6 km -- 31 mb,
and at the altitude 9 km -- 21 mb. These differences are due to
the predominance in the cold period of all anticyclonic regime in
the mid-latitude troposphere, >and the predominance of intense
cyclonic activity in the upper latitudes -uring the cold period.
This nature of the differences in the mean pressure values by half-
year and latitudinal zones persists up to altitudes of about 40 km.
Above 45 km, the largest mean pressure is observed in the warm.:,
half-yjear in the upper latitudes.
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Fig. 3.4. Distribution of mean air pressure
by altitude, half-years, and longitudinal

zones:
Middle latitudes: warm period (1) and cold

period (2); northern latitudes: warm
period (3) and cold period (4)

Fig. 3.5 gives the results of comparing the mean air pressure
values~ith the pressure based on the SA-64 Standard Atmosphere.
As follows from Fig. 3.5, up to the altitude of 40 km in the mid-
latitudes, the mean pressure somewhat exceeds the standard pressure.
An exception is representedlby a narrow layer near the 20 km level. /64
Above 40 km the mean pressure in the cold half-year in the mid-
latitudes becomes less than the standard. In the warm half-year
at these latitudes the mean pressure remains higher than the stan-
dard, where above 50 km the difference between them grows. In the
high latitudes in the warm half-year the mean pressure up to the
altitude 45 km is 5177 smaller than the standard. Above 45 km the
difference between them becomes positive and rises sharply with
altitude, exceeding 40% at the altitude 60 km.

In the cold half-year the mean pressure in all of the atmo-
spheric layer considered is below the standard value in the upper
latitudes. With increase in altitude, the difference between the
values steadily rises, reaching 20% at the altitude 55 km.

Table 3.3 presents the mean pressure values as well as the
pressures from the CIRA-1965 model.
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Data given in Table 3.3
showed that in the warm time
of the year the mean pressure

-km) I  at the stations exceeds the
2 3pressure based on the CIRA-

0o- \ 1965 Standard Atmosphere.
In the cold period the oppo-

5 "" site picture is observed.
Particularly large differences
occur at the high latitudes.

Thelpossible limits to
the variability of air pres-
sure at different altitudes
can be judged from the data

(20 given in Fig. 3.6; here are
shown the relative deviations

Sof the extremal pressure
values observed over the
North American continent in

2 '-0 0 /0 20 1 mo. the period 1961-1966 of the
st] mean value. From Fig. 3.6

it follows that in the high
Fig. 3.5. Deviation of mean air latit follows there art in the highater
prdssure from standard value: extremal deviations than in

extremal deviations than in
Symbols as in Fig. 3.4

TABLE 3.3. MEAN PRESSURE VALUE p AND PRESSURE
ACCORDING TO CIRA-1965 (mb)

jwhite Sands / Fort Greeley __
H i May October 'May J October
km p CIRA-1965 p CIRA-1965 P CIJRA-1965 P CIRA-1965

30 12.541 12,100 12.186 12,500 12.550 11.300 11,509 12,900
35 6.162 6,000 5.877 6.150 6,060 5.300 5.384 6,310
40 3.189 3.030 2.919 3.120 3,110 2,620 2,607 3,200
45 1,701 1.570 1.514 1,650 1,660 1.350 1,302 1.670
50 0.962 0.830 0.817 0,887 1,060 0.720 0,685 0,896
55 0.540 0.445 0,437 0,476 0.630 0,380 0,356 0,482
60 0.281 0.230 0.230 0.248 0,341 0,196 0.206 0,254

the middle latitudes. The largest values are noted in the cold
half-year period. In the stratosphere two maxima of deviations
are detected, one of which lies in the 25-35 km layer, and the
other lies in the region of the stratopause. These maxima are
equal to 50 and 60%, respectively.
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The curves corresponding to the negative extreme of deviations /65
of pressure from the mean do not exhibit so well-defined differ-
ences. However, we can trace the maximum in the mid-latitudes at
the altitude of about 40 km, and in the upper latitudes at the
altitude of about 50 km. The data in Fig. 3.6 further indicate-'
that in the stratosphere and lower mesosphere the pressure can
vary within appreciable limits. These changes can attain 80-100%
inlthe stratosphere and 100-1 2 0% in the mesosphere.

The large changes in
air pressure in these atmo-

312 k 1 2 3 spheric layers are indi-
\ 6 / . cated by the root mean

I I( square deviationscof pres-
sure given in Fig. 3.7 in

50- ]ratios to the mean pres-
sure at the corresponding

Saltitude. From Fig. 3.7
it follows that the root

Smean square deviations of
pressure in the upper

\ latitudes have a larger
0value than in the middle

latitudes. At.] the curve
S/ shown in Fig. 3.7 two

maxima are clearly evident,
7I which lie in the 30-40

and 50-60 km layers, that
• "is, they coincide with

-0 -20 0 20 0 60 the maxima at the curves
Smp I of the extremal devia-

Fig. 3.6. Deviations in extremal pres- tions. The root mean
sure values from the mean.square deviations here

mean.are 10 and 20-30%,Symbols as in Fig. 3.4. are 15-20 and 20-30 ,
respectively.

The general pattern of variation in the mean air density with
altitude as a function of half-year and latitude is similar to the
pattern of change in pressure. This is evident if we compare
Figs. 3.4 and 3.8. In Fig. 3.8 is shown the variation in mean /66
densiy with altitude above the North American continent. However,
the curves in Figs. 3.4 and 3.8 also have appreciable differences.
The most important difference is a large mean air density in the
high-latitude troposphere compared to the mean density of air in
this atmospheric layer in the middle latitudes.

These data indicate that the smallest mean air density in the
stratosphere and lower mesosphere occurs in winter and the northern
latitudes. The highes mean air density in the stratosphere is
observed during the warm half-year in the middle latitudes. This
phenomenon can be traced up to an altitude of approximately 40 kr ,
that is, just as for air pressure.
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The density of the atmosphere can undergo appreciable fluc-
tuations about the mean. This is clearly seen in Fig. 3.9, where
the relative deviations of the extremal air density is observed
in the period of 1961 to 1966 from the mean values are presented.
They are especially large in the high-latitude stratosphere in
the cold half-year, although in.the middle latitudes even in the
warm halfiyea at some levels they exceed 20% in the upper lati-
tudes. The curves of the extremal deviations have two well-
defined maxima, one of which is at the altitudes 25-30 km, and
the second -- at the altitudes 45-0 km. These maxima are espe-
cially large in the northern latitudes in the cold half-year.
At the altitude 30 km the density of the air can exceed the mean
by 60%, and at the altitude 45 km -- by approximately 70%. There-
fore, if we consider that the deviation of' the minimum air den-
sity is from the mean, the density in the stratosphere can vary
by 50-70%, and in some altitudes -- by 100% or more.

The density of air in the strato-
H 2 3 : sphere can vary quite rapidly. In

km \ \Fig. 3.10 is presented the altitude dis-
60 \ tribution of the root mean square changes

\ in air density (square roots of the time-
\ based structure functions) over a 24-

50 Y hour time interval. Fig. 3.10 shows that
in the course of a 24-hour day in the
mid-latitude stratosphere the air den-

40 ) sity has a variability of 7-12%, while
in the upper-latitude stratosphere --

30 10-17%.

The high variability in air density
20 in this atmospheric layer is indicated

by the root mean square values of devia-
tions, shown in Fig. 3.11. From the /68

the root mean square deviations of air

density in the troposphere:.are relatively
a mall and amount to 2-5%. With increase

m- in altitude, they qlimb, exceeding 10-

Fig. 3.7. Root mean square 15 in the stratosphere and 20-25% in
deviation of air pres- the lower mesosphere.

sure
Symbols as in Fig. 3.4 The nature of the distribution of

air densities in the 70-80 km layer can
be judged from the data in Table 2.4.
The values given there were obtained

by averaging air density data for two groups of latitudes in the
North American continent.

55



..k.n /67
- 13

50-

0 0 10 20 10 Lg mp

Fig. 3.8. Dis'pribuion of air density by alti-
tude, half-year, and latitudinal zone
Middle latitudes: warm period (1) and cold

period (2); northern latitudes: warm
period (3) and cold period (4)

4 312 Hkmf,42
\ - From Table 3.4 it follows /69

Ij \ that at the altitude 70-80 km
o \ 50 the difference between the
50- maximum and the minimum values

/, completely proves to be larger
40 than the mean density as such.

In the period 1963 to
0) 1964 13 atmospheric soundings

"/ were conducted over Kwajalein'
) Island (90 24' N. Lat; 167 u -

20- 39' E. Long) using meteoro-
1 *logil l rockets, which reach

the altitudes of 100 km.
From the data of these ascents,
mean values were obtained for

I Iair density, as well as
-20 -to a 10 20 Jo30 4 ex extremal and root mean square

Pig. 3.9. Deviations of extremal deviations. These values
air densities from mean can naturally aspire only
Symbols as in Fig. 3.8. to the rule of approximate

estimated characteristics
(Table 3.5).
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Fig. 3.10. Variability in Fig 3.11 Root mean
air density in a 24-hr square deviations of
interval. Symbols* see Fig.3.8 air density. Symbols:

see Fig. 3.8.

TABLE 3.4. MEAN EXTREMAL VALUES TABLE 3.5 HEIGHTWISE DISTRIBUTION OF AIR
AND ROOT MEAN SQUARE DEVIATIONS DENSITY IN 80-100 KM LAYER FROM DATA
OF AIR DENSITY (g/m3) OF 13 SOUNDINGS

H p Pmln Pmax %p p% p p pH -, I - -

ineas 0.85 0,00836 20.0 -14,7 0.00074 8.9
70 52 0,126 0055 0.20 0.024 19.1 90 000374 92 -101 0.00023 66

80 25 096 0,006 0.030 0.006 30.3 95 0.00158 30.0 -31,0 0.00025 15.8
100 0.00053 17.1 -17,0 0.00006 10.6

TABLE 3.6. DENSITY VALUESI FROM ROCKET SOUNDINGS
AND METEOR PHOTOGRAPHY (g/m 3 )

S]
Sfrom rocket! from meteo s

85 0.00836 0400912

90 0.00374 0.00357

95 0.00158 0.00112

100 0.00053 0.00054

Table 3.6 presents for comparison atmospheric density values
from rocket soundingslover Kwajalein Island and by photographing
meteors over Kiev (see Section 1 .3).

The values in Table 3.6 show that the densities from rocket
soundings and meteor photography agree well with each other.
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Of interest are the results of comparing the mean density of
air with the standard density based on the SA-64 standard atmo-
sphere, shown in Fig. 3.1. In the middle latitudes up to an alti-
tude of 10 km, the mean air density proves to be lower than the
standard. Above this level up to the altitude of approximately /70
35 km it exceeds the standard in both half-years. Above 35 km
the mean density remains larger than the standard in the warm
half-year. The maximum difference between them occurs at the
altitude 55 km and is 13%. In the cold half of the year above
35 km the mean air density becomes less than the standard. With
increase in altitude, the difference between them climbs, reaching
12% at the altitudesl60 km.

In the high latitudes
4 2 H m the mean air density is

larger than the standard
60 \ value *ini the lowest tropo-

spheric layer. Above 5-7
Skm and up to the altitude

0 of 45 km, the mean air
density in the cold dnd
warm half-years proved to

40 be less than the standard.
Above 45 km in the warm
half of the year the mean
density again becomes
larger than the standard
and the difference between
them rises sharply 4ith
altitude. At an altitude
of about 55 km it is already
30% higher than the density

/ based on the standard atmo-
-2_ 20 m sphere. In the cold half-

-20 -10 0 10 20 '?0 7% o
-st year the mean air density

above 45 km in the high
Fig. 3.12. Deviations of mean air latitudes remains less than
density from the standard value the standard. With increase
Symbols as in Fig. 3.8. in altitude, the difference

between them rises, reaching
a maximum of 20 of the alti-
tude 55 km.

Table 3.7 gives the deviations of the mean air density from
the standard based on sounding data over Kwaja,lein Island.

The data given above characterize the deviations of the mean
values of air density from,,the standard value. 'Howeve6, it is of
interest to find how often particular deviations from tandard
values can be observed. An idea of thLs can be afforded by
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TABLE 3.7. DEVIATIONS OF AIR DENSITY /71
FROM STANDARD VALUE OVER' KWAJALEIN J

ISLAND

// km 70 75 80 85 91o 95- 100

Pt 35.9 10.5 -6.7 -2.0 7.7 4. -. 2

histograms of the deviations of air density in the stratosphere
and lower mesosphere. In Fig. 3.13 are shown histograms of the
relative deviations of air density for the warm half-year in the
middle latitudes. They indicate that at the altitude of 20 km
the deviations from 0 to -10% have the highest incidence. Begin-
ning<!at the altitude 25 km the maximum ihcidence shifts to the
gradations 0 to 10o. Up to the altitude of 40 km it is approximately
60%. Above 40 km the incidence of the deviations exceeding 10% in
absolute value rise sharply. Histograms for cold half-year in the
middle latitudes and warm half-year in the upper latitudes are of
similar form.

Altogether different is the patterni of the histograms for
the high-latitude cold half-year (Fig. 3.14). The difference
between them is that at these levels the center of distribujtion
shifts toward the region of negative gradations and does so more
strongly, the higher the level. This indicates that in the vast
majority of cases in the cold lhalf-year there are negative devia-
tions of air density from standard values.. Quite often cases are
encountered when the air density proves to be 40, 50, and even
60o lower than the standard value.

Table 3.8 presents for comparison the mean air densities over
the White Sands and Fort Greeley stations and the air densities
based on the CIRA-1965 Standard Atmosphere.\

TABLE 3.8. MEAN VALUE OF DENSITY p AND AIR DENSITY
FROM CIRA-1965 (g/m3 )

White Sands I Fort Greeley -

" May October May I October
km- CIRA-1965 p CIRA-1965 p CIRA-r65 - CIRA-1965

30 18,779 18.500 18,761 18,700 19,092 18,900 18.032 19.700
35 8,772 8,680 8.738 8,800 8,683 8,460 8,246 8.540
40 4.264 4.250 4,073 4,250 4. 129 3.980 3.846 4.020
45 2.166 2.160 1.989 2,130 2,116 1.980 1.803 1.001
50 1,203 1,114 1.055 1,130 1,327 1.0)80 (. 17 1.01 00
55 0,671 0.622 0,573 0,627 0.70) 0.615 0.470 0.559
60 0.353 0.342 0,307 0.346 0.428 0.317 0.274 0. 299
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Fig. 3.13. Histogram of deviations of air density from standard.
Warm half-year, middle latitudes

From Table 3.8 it follows that over both these stations in /74
May, the mean density exceeds the CIRA-1965 density, and does so
by a fairly large value in the high latitudes. In October the
opposite picture is observed. Both in May and October, the great-
est differences between these densities are observed in the high
latitudes.

These results of a comparison of temperature, pressure, and
air density with the SIA-64 and the CIRA-1965 models show that
even the space-time model of the CIRA-1965 atmosphere that is more
physically substantiated does not adequately reflect the actual
distribution of the physical parameters of the atmosphere.
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Fig. 3.14. Histogram of deviations (of air density from standard
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3.3. Correlation Matrices of Temperature, Pressure, and Air Density

The first block of the principal diagonal of the generalized
covariant matrix (Fig. 3.6) is anautocovariance )matrix of air temper-
ature. It is a symmetric matrix, along whose principal diagonal
allocated the values of the temperature dispersions at altitudes.
To this matrix there corresponds the autocorrelation matrix of
temperature.

Autocorrelation matrices are conveniently represented for
purposes of analysis in the form of autocorrelation functions.

Autocorrelation functions of temperature have several charac-
teristic features. They are shown in Figs. 3.15 and 3 16 for the
middle'and high latitudes of North America. The numbers alongside
the curves in the figures denote the altitude in kilometers of
the initial correlation level.
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Autocorrelation functions of temperature for the middle lati-
tudes 'whose initial correlation levels lie in the troposphere (in
the following we will call these functions troppspheric, in contrast
to stratospheric functions, that is, functions with the initial
correlation levels located in the stratd\phere) have approximately
identical form in the warm (Fig. 3.15 b)' and cold (Fig. 3.15 a)
half-year. They are characterized by the fact that with increase
in altitude the correlation in the troposphere decreases rapidly,
reaching zero at the altitude 10-12 km. Above this level the
correlation becomes reciprocal. The maximum reciprocal relation
is observed at the altitude 15 km. These values of the autocorrela-
tion function indicate that a rise in temperature at the altitude
15 km usually accompanies its decrease at all levels.

Stratospheric functions in the cold period and functions with
initial correlation levels of 15 and 20 km:.in the wbrm period are
identical in form and indicate a fairly rapid decrease in the
correlation with altitude. Stratospheric functions with initial
correlation levels above 20 km in the warm half-year decrease
more slowly with increase in altitude.

In the high latitudes, the autocorrelation functions of tem- /75
perature corresponding to the 3 andl6 km initial correlation levels
also decrease rapidly with altitude, however, the x'eciprocal cor-
relation, whose maximum as in the middle latitudes occurs at the
altitude 15 km has a smaller value. The pattern of the correla-
tion of temperature in the stratosphere in the cold (Fig. 3.16 a)
and warm (Fig. 3.16 b) half-years in the high latitudes is identi-.
cal and is similar to the pattern of the correlation in the warm
period in the middle latitudes of above\20 km.

Thus, in the graphs of the autocorrelation temperature func-
tion we can distinguish four groups lof curves. The first and the
second groups refer to the initial levels of correlation located
in the troposphere for the middle and high latitudes, respectively.
The\third group can encompass the stratospheric ]curves for the
cold half-year and functions with initial levels of 15 and 20 km
for the mid-latitude warm half-year. Finally, the fourth group
includes the autocorrelation functions of temperature .for the mid- /77
latitude warm half-year with initial correlation levels of above
20 km, and also for the high-latitude warm and cold half-yea with
initial correlation levels located in the atmosphere.

Autocorrelation matrices of pressure, as the above-described
matrices of temperature, are also conveniently represented as auto-
correlation functions. These functions have several features.
In the middle latitudes in the cold half-year (FLg. 3.17), the auto-
correlation functions of pressure for which the Initial correla-
tion levels are in the troposphere decrease rapidly. Above 25 km
they again begin to rise somewhat. Stratospheric autocorrelation
functions beginning at the altitude 30 km indicate the smoother
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Fig. 3.15. Correlation functions Fig. 3.16. Correlation func-
of temperature for the cold (a) tions of temperature for
and warm (b) half-years in the the cold (a) and warm (b)
middle latitudes half-years of the high lati-

tudes

decrease in the correlation of pressure at the lower-lying levels ,
with pressurei at the high altitudes. In the high latitudes the
nature of the correlation of pressure and different levels is
approximately the same.

Autocorrelation matrices of air density are also, as is true /78
of autocorrelation matrices of temperature and pressure, the
corresponding blocks of the generalized matrix (3.7). Figs. 3.18
and 3.19 show the autocorrelation matrices of air density for the
middle and high latitudes in the form of autocorrelation functions.
As before, these numbers alongside the curves denote altitudes in
kilometers of the initial correlation levels.
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Fig. 3.17. Correlation func-
tions of pressure for the o 20 30 9o OH km)
cold (a) and warm (b) half-
years of the middle latitudes

In the middle latitudes in
the cold (Fig. 3.18 a) and Fig. 3.18. Correlation functions
warm (Fig. 3.18 b) half-years, of air density for the cold (a)
functions with 3 and 6 km ini- and warm (b) mid-latitude half-
tial correlation levels decrease years
rapidly with increase in altitude,
reaching zero near the altitude
of 10 km, and then take on a negative value of 0.5-0.7 at the alti-
tude 1 km. Corresponding functions belonging to the cold (Fig.
3.19 a) and warm (Fig. 3.19 b) high-latitude half-year differ from
the above-indicated functions only by their smaller value at the
minimum point. If we consider the autocorrelation functions of
air density with initial correlation levels above 9 km, we can see
that they are of the same patPern in both half-years and lat tudi-
nal zones. Therefore, all these functions can be classed in three
groups. The first group includes tropospheric autocorrelation
functions of air density for the middle latitudes, the second --
tropospheric autocorrelation functions of air density for the high /279
latitudes, and the thfrd -- all these stratospheric autocorrela-
tion functions of air 'density in both latitudnal zones and both
half-years.
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rp( 3 6 9 1 20 25 30 J5 4 Now let us turn to the)
reciprocal'correlation matrices

.8 of temperature, pjessure, and
air density. The reciprocal
correlation matrices are con-

0.4 veniently represented as fields
of isocorrelation. These fields
make it possible to graphically

20 30j 0 50represent the regions with dif-
ferent degrees of correlation

0between these atmospheric para-
meters within the limits of the

3 6 9 15 20 25 30 3 4 atmospheric layers under study.

8 o Reciprocal correlation
matrices of air pressure and
temperature for the cold and

0.4 warm half-years in the middle
latitudes are showo in Figs.

3.20 and 3.21. They have the
Skm following features:

1. The air pressure in
-0.4 t'he upper part of the tropo-

sphere as a close positive
Fig. 3.19. Correlation func- correlation with temperature
tions of air density for the at the lower-lying levels.
cold (a) and warm (b) half-
years of the high latitudes 2. A relatively narrow /80

atmospheric layer is observed
near the 15 km level in which
the temperature has a fairly

negative correlation with the pressure at the lower-lying levels.
In the 10-15 km atmospheric layer there are very large vertical
gradients of the correlation coefficient.

3. In the stratosphere the air pressure at the levels 40-50
km exhibit a positive correlation with air temperature at the
levels 25-35 km.

In the high latitudes the reciprocal correlation matrices of
air pressure and temperature (Figs. 3.22 aid- .23) differ somewhat
from the analogous matrices for the middle latitudes. These dif-
ferences pertain mainly to the stratosphere and amount to the follow-
ing: 1) at the boundary between the stratosphere and troposphere
there is no region with a large negative correlation between pres-
sure and temperature; 2) in the cold half-year the region with high
positive correlation between pressure in the upper stratosphere
and temperature in the 30-40 km atmospheric layer is observed;
3) in the high latitudes the correlation between pressure in the /82
stratosphere and temperature at lower levels is even closer.
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Fig. 3.20. Field of isocorrelations rpt(H, H')

in the mid-lat-itude cold half-year

Figs. 3.20-A.23 clearly show also the values of the elements
lying along the main diagonal of the reciprocal correlation
matrices of pressure and temperature characterizing the statistical
relationship between the physical parameters of the atmosphere at
the same levels. Also, from these figures it follows that the
10 km correlation coefficient between temperature and pressure is
0.6-0.7. With increase in altitude, the correlation between them
falls off and in the stratosphere changes little, where in the
middle latitudes it is virtually absent, while in the high lati-
tudes if one consider s the bursts at the altitude 35 km in the
warm half-year, it is small. In the middle latitudes there is
a high negative correlation in both half-year at the altitude
15 km.

Reciprocal correlation matrices of air density and temperature
have a number of interesting features.

Figs. 3.24 and 3.25 show the reciprocal correlation matrices
of air,density and temperature for the warm and cold half-year
in the middle latitudes. From these figures it follows that
the warm and cold half-years have an analogous structure. In the
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Fig. 3.21. Field of isocorrelations rpt(H,H')

in the mid-latitudOwarm half-year

troposphere we observe a high reciprocal relationship between air
temperature and density. A second locus of the reciprocal correla-
tion occupies the atmospheric layer from 10 to 20 km and extends
along the principal diagonal. In the isocorrelation field we
observe a locus of a very high positive correlation. It indicates
that an increase in air density in the troposphere corresponds to
a rise in temperature at altitudes close to 15 km. In the strato-
sphere above 20 km the correlation between air density and tempera-
ture is very low.

The isocorrelation fields for the high latitudes (Figs. 3.26
and 3.27) differ widely from the above-consie_4 red fields. This
difference lies in the fact that first of all the regions of posi-
tive correlation between density in troposphere and temperature
at its boundary with the stratosphere are less intense, but have
greatei extent and consist lof two loci, one of which is at the
altitudes 10-12 km, and the second -- at the altitudes 17-22 km.
Secondly, the air density in the stratosphere in the 20-40 km
layer has a fairly high correlation with air temperature at the
altitudes 35-40 km.
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The values of the diagonal elements of the reciprocal correla-
tion matrices of air density and temperature characterizing the
extent of these statistical relationship between these physical
parameters of the atmosphere at the same levels indicate that be-
tween the air density and temperature at fixed levels there is a
high reciprocal relationship only in the middle latitudes up to
the altitude 20 km, while in the high latitudes this is true only
in the lower and middle troposphere. Higher up, the correlation
between them virtually disappears.

Now-let us turn to the reciprocal correlation matrices of air /87
density and pressure. They are shown in Figs. 3.28-3131 in the
form of fields of isocorrelations for the warm and cold:'l:half-years
of the middle and high latitudes. All the matrices presented in
these figures have the same properties, which are that in the
troposphere the correlation between air density and pressure is
low. In addition, a small locus of negative correlation coeffi-
cients occupies the lower left section of the isoborrelation
field and indicates that a decrease in air density in the upper
troposphere and in the lower part of the stratosphere usually
accompanies a pressure rise in the lower troposphere. Above the
tropopause is located an elongated zone of very high correlation
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coefficients between air density and /pressure 10 km and more
in thickness, where the maximum values lie along the principal
diagonals of these matrices.

The above-noted features of the mutual correlation matrices
reflelct the physical relationships that are characteristic of the
atmosphere. Several of these features, as for example the high
correlation coefficients between pressure and temperature at the
lower-lying levels and others are predictable, while the rest thus
far have no found any convincing explanation.

3.4. Statistical Characteristics of Wind in Dense Atmospheric
Layers

Let us examino as statistical characteristics describing the
vertical structure of the wind field in dense atmospheric layers
the iean values of the meridional and zonal components of wind
velocity, the root mean square deviations, and the ortho- and
reciprocal correlation matrices. The above-listed statistical
characteristics were obtained on the basis of atmospheric rocket
sounding data, briefly characterized in Section 3.1.

For these two half-years, the altitude distribution of the
mean values of the zonal v and meridional u wind velocity compo-
nents is shown in Figs. 3.32 and13.33.

In the middle altitudes (Fig. 3.32), in the cold half-year
the zonal component is positive in the entire atmospheric layer
under consideration, which is accounted for by the prevalence in
the lower 70'km atmospheric layer of a westerly transport, caused
as indicated above by the circumpolar cyclonic eddy. In the tropo-
sphere the westerly component rises with altitude, reaching its
maximum at the altitude 10 km. Above 10 km the westerly component
diminishes and the main value occurs at the altitude 20 km. Above
20 km the westerly component began rises and becomes 68 m/sec at
altitudes 70 km.

The meridional/component in the entire atmospheric layer to
70 km is positive and has a relatively small value. The largest /88
value of the meridional component occurs at the altitude 50 km
and reaches 11.3 m/sec. Thus, in the middle latitudes the westerly
transport with a small southerly component prevails in the cold
half-year.

In the warm half-year the meridional component in the middle
latitudes is also positive, but has an even smaller value.

The zonal component of the wind in the warm half-year rises
with altitude in the troposphere. Its maximum, 11 m/sec, occurs,
as in the cold half-year, at the altitude 10 km. Above this level,
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the westerly component diminishes and becomes equal to zero at an
al/titude of about 18 km. A further increase in':altitude is asso-
ciated with the reversal and growth of the zonal component. It
reaches its maximum value, 32 m/sec, at the al\titude 70 km. There-
fore, in most of the stratosphere in the warm half-year quite
intense easterly transport of air masses is observed.

Hk MIH

--- 2

- o -20 0 20 40m-,m, /se -0 -2 -10 0 t 20m.m, nfec

Fig. 3.32. Mean valueslof Fig. 3.33. Mean values of
the wind velocity compo- the wind velocity compo-
nents. Middle latitudes nents. High latitudes
1. cold period 1. cold period
2. warmjperiod 2. warm period

In the high latitudes (Fig. 3.33) the zonal component in the
cold half-year has the following feature4. Just as in the middle
latitudes, it is positive up to the altitude 10 km and rises with
altitude, while it remains nearly unchanged in the 10-20 km layer.
Above 20 km an increase occurs in the velocity of the westerly
wind. At the altitude 55 km it reaches a maximum, 28 m/sec. A
decrease in the zonal component accompanies a further increase
in altitude, where at the altitude 75 km it becomes negative and
rises":with altitude.

The meridional wind velocity component is negative throughout /89
nearly thelentire 70-km atmospheric layer. Its greatest value,
-18 m/sec, lies at the altitude 70 km.

In the warm half-year the zonal component of wind velocity
in the troposphere in the high latitudes is also positive upi.to
the altitude 20 km. Above this altitude its reversal and increase
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is observed. The largest negative value of the zonal components
(-15 m/sec) occurred at the altitude 55 km. Upwards of this, it
again becomes positive and rises.

The meridional component is positive land small in the entire
atmospheric layer under consideration. Only above 50 km does it
rise appreciably, reaching 50 m/sec at the altitude 70 km. The
values of the wind velocity components indicate that in the warm
half-year in the high latitudes easterly winds also prevail, which
in the lower mesosphere change into westerly winds.

By comparing Figs. 3.32 and 3.33 with the time profiles of
the wind field for 30 and 600 N. Lat (see Figs. 2.1 and 2.2), we
can note that the altitude distributions of the wind velocity
components averaged by half-years agrees fully with the time
profile. The somewhat smaller maxima of wind velocity components
are associated with the additional smoothing 9ccurring during
averaging by half-years and by latitudes.

Fig. 3.34 shows the variation;with altitude of the root mean
square deviations of wind velocity in the middle and high lati-
tudes. The graph showed that the distribution of the root mean
square deviations of the wind velocity components differs in the
different zones. In the middle latitudes the root mean squane
deviations of the wind velocity components are nearly identical
up to the altitudes 20-25 km in the cold and warm half-years.
Above these levels, the root mean square deviations of the zonal
component become larger than the meridional, by a factor of 2-3.
Here the root mean square deviations of the wind velocity components
in the cold half-year exceed their values in the warm half-year.
The largest value of the root mean square deviations of the meri-
dional component (22 m/sec) is observed in the cold half-year at
the altitude 75 km, and the zonal component (33 m/sec) -- at the
altitude 60 km.

In the high latitudes the altitude distribution of the root
mean square deviations of wind velocity components in the cold half-
year differs appreciably from their distribution in the warm half-
year. While in the warm half-year the ratios between the root mean
:squareldeviations of zonal and meridional components are neafly
the same as in the middle altitudes, in the cold half-year the root
mean square deviations of both components are nearly identical in
the entire atmospheric layer under study.

Generalized covariance I and correlation matriices of the wind
velocity, as shown above, consist of four blocks. Blocks located
along the principal diagonals of the generalized correlation
matrix are autocorrelation matrices of the zonal and meridional 190
wind velocity)components. For purposes of analyzing the matrices,
let us represent also in the form of autocorrelation functions.
Let us lookl at some features of these functions.

73



SI Fig. 3.35 shows the autocbrrelation functions of the zonal
rv(AH) and meridional ru(AH) wind velocity components in the mid-
latitude coldlhalJ-year. From Fig. 3.35 it follows that the func-
tions ru(AH) with 5-20 km initial correlation levels, and the
functions are settled with 5-25 km initial correlation level (the
altitudes of the initial correlation l;levels in kilometers are
given alongside each curve) are of identical form. Above 25 km
the correlation of the zonal components falls off more slowly with
altitude.

11km a) b)3 lo(H)5 101520 25 30 35 40 45 50 55H ki a

70 / G G a)

60 
I

50I )

30 , / ut'HlJ 5 10 15 20 25 30 35 40 45 50 .I / /

20-

0 0.4

10 I

/o 20 0 o 1 20C,uv. m/sec, 20 40 50 60-l. km-

Fig. 3.34. Root mean square Fig. 3.35. Correlation functions
deviations of wind velocity of zonal (a) and meridional (b)
components wind velocity components in the
a. middle latitudes mid-latitude cold half-year
b. northern latitudes

Autocorrelation functions of wind velocity \components for the
warm half-year are shown in Fig. 3.36 for the middle latitudes;
from this figure it is clear that in the warm hallf-year the pattern]
of the variation in correlation with altitude shown by meridional
and zonal components is different. If the functions for the meri-
dional components with 5-15 km initial correlational levels are of
the same form as in the cold half-year for the same altitudes, func-
tions with initial correlation levels higher than 15 km indicate
a rapid falloff jin the correlation of the meridional components /92
with increase- in altitude. Conversely, autocorrelation functions
of these zonal component decrease very slowly.

74



In the Icold half-
v/i H 10 15 20 25 30 35 40 45 50 55 year the autocorrelation

of the zonal (Fig-3.37 a)
48 ) and meridional (Fig.

3.37 b) wind velocity
components in the high

4 latitudes are virtually
identical in form through-i
out this entire atmo-
spheric layer.

r(H) 5 10 15 20 25 30 35 40 45 50 55
In the warm half-

F8- b) year the autocorrelation
functions of wind velocity
components in the high

0,4- latitudes are virtually
analogous to the corres-
ponding functions in the

to 20 X o • ki middle latitudes in the
warm half-year. The
correlation between the

Fig. 3.36. Correlation functions of meridional components
zonal (a) and meridional (b) wind (Fig. 3.38 b) with increase
velocity components in the high- in altitude above 15 km
latitude warm half-year falls off very rapidly,

but between these zonal
components (Fig. 3.38 a)
-- very slowly in this
entire atmospheric layer.

If we consider jointly all autocorrelation functions of wind
velocity components, we can note that their entire set can be sub-
divided intojfour homogeneous groups. The first" group includes
the autocorrelation functions of the meridional wind velocity com- /93
ponent for the warm and cold half-years in the middle latitudes
and for the warm half-year in the high latitudes, and the zonal
component for the mid-latitude cold half-year, which has 5-20 km
altitudes for their initial correlation levels. The second group
contains the autocorrelation functions of the meridional wind
velocity component with initial correlation levels higher than
20 km for the middle and high latitude warm half-year. The third
group unites all the autocoirelation functions of the meridional
and zonal components in the mid-latitude cold half-year with
initial correlation levels higher than 20 km. Finally, the fourth
group includes the autocorrelation functions of the zonal wind
velocity component for the.mid- and high-latitude warm half-year,
and also for the mid-latitude cold half-year above 20 km.

The reciprocal correlation matrices of the wind velocity
components for both half-years and both latitudinal groups are
identical in !pattern. This pattern amounts to the virtual absence
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of a correlation between the wind velocity components either at
the same levels or at different levels, within this particular
atmospheric layer (Table 3.9).

TABLE 3.9. RECIPROCAL CORRELATION MATRIX OF WIND /94
VELOCITY COMPONENTS rvu(H, H'). WARM HALF-YEAR,

MIDDLE LATITUDES

ki' 5 10 15 20 25 30

5 0.21 0.20 0.1(0 0.09 0,04 0.02
10 0.22 0.25 0.13 0.02 0.03 -- 0.02
15 0.20 0.24 0.16 0.03 0.02 0.02

20 0.07 0.09 0.02 0.00 -- 0.11 -- 0.06
25 0.01 0.08 0.07 0.01 0.04 0.00

30 -- 0.12 -- 0.07 -- 0.03 --0.06 -0.06 -- 0.06
35 -- 0.07 -- 0,03 0.01 0.04 -- 0.05 -- 0.05
40 -- 0,07 -- 0.09 -- 0.04 -- 0.02 -- 0.04 0.02

45 0.11 0.14 0.08 0.10 0.12 0.12

50 --0,04 --0,03 --0,07 --0.01 0.01 0.03

55 -0.06 --0.08 --0.09 --0.05 --0.04 --0.07

60 0.07 0,08 0.06 0.04 0.05 0.08

H km a35 40 45 50 5 60

5 0.05 0.06 0.06 0.05 0.01 --0,03

10 0.02 0.02 0,00 0.01 --0.05 -0.04

15 0,08 0.06 0.02 0,04 -0.03 --0.06

20 --0.03 --0.06 --0.04 --0.02 --0.04 --0.03

25 0.01 --0.01 0.01 0.03 0.01 0.00

30 --0,08 --0.11 --0.05 --0,03 --0,03 --0,01

35 --0.05 --0.04 -0.02 --0.12 --0.03 --0.01

40 --0.01 --0.01 0.01 0.02 0.08 0.03

45 0.18 0.12 0.16 0,18 0.16 0.05

50 0.08 0.07 --0.01 0,08 0.09 0,01

55 --0.01 --0.04 --0,01 --0,07 --0.02 0.01

60 0.10 0.12 0,15 0.11 0,13 0.14

The above-described features of the autocorrelation matrices,
of the altitude distributions of the root mean square deviations,
and the nature of the correlations between the wind velocity compo-
nents lead to the conclusion that the scatter of wind velocities
can be regarded as circular in the middle latitudes and in the warm
half-year in the high latitudes approximately to the altitudes
20-25 km, as well as in this entire atmospheric layer during the L95
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cold half-year in the high latitudes. In the remaining cases, the
scatter of wind velocities has a well-defined ellipticity. I Here,
since the correlation between the wind velocity components is
virtually absent, the axes of the scatter ellipse coincide with
the axes of the standard coordinate system, which as indicated
above, was used for expanding the wind velocity into components.

3.5. Precision'of Determining the Statistical Characteristics of
the Physical Parameters of the Atmosphere

The values of the atmospheric parameters measured during the
sounding periods with meteorological rockets contain errors of
two kinds. The first kind includes systematic errors, for example,
dynamic and inertial. They are cancelied out by introducing appro-
priate corrections into the measurement data. The second kind of
errors-- random errors -- is contained in the initial data. At a
result, the statistical characteristics calculated from these data
contain certain errors. Also, since the statistical characteris-
tics were calculated for restricted sets, as indicated above, they
are estimates of the unknown functions, that is, they have a cer-
tain precision.

If we denote the random variable under study by x, then its
mean x obtained for some set 'In will be the closer to its rmathefia- j
matical expectation mx the larger the n. The difference between
them can be characterized by the root mean square error of the
mean ax, which for normally distributed values of x is defined by
the following expression:

X.. (3.22)

When the number of cases in the set under study is larger than
several tens, the difference between the biased and unbiased
estimates virtually disappears. If we denote the dispersion of
the unknown random variable by Dx, then

@, • = : D " = (3.23)

The right expression characterizes the precision of determining
the dispersion of variable x. Similarly, for the covariance of
random variablesx and y we have

7(3.24)
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The second formula of equalities (3.24) allows us to obtain the /96
root mean square error of the covariance

+3y ry .(3.25)

We can also compute the precision with which the root mean square
deviation of the random variable x was calculated. To do this,
in the case of the normal distribution we have the formula

_o _ (3.26)

The degree of approximation of the estimates to the unknown
statistical characteristics is customarily estimated by using
confidence intervals. To determine the confidence intervals of
the computed statistical characteristic, we must assign the proba-
bility with which the given characteristic will fall in these
intervals. If we assume, for example, that this probability is
0.95 (this probably corresponds to the familiar rule 2 ), the
probability of the opposite event is 0.05.

Let us consider the variable

~-

Then we can write that the probability is

Pl kJ > ko} = i - (k 0 0 ) = 005 (3.27)

where (Qo.st is the probability integral.

The quantity kO 0 5 can be found from appropriate tables and
is 1.96>for the specified probability. Then Eq. (3.27) can be
written as follows:

P: X- mx 1.96)= 0.05. (3.28)

This equality allows us to state that with a probability 0.95,
we have

- 1.96 < mx < X + 196" (3.29)
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TABLE 3.10. CONFIDENCE INTERVALS QOF AIR DENSITY /97
(\g/m 3 ), TEMPERATURE (oC), AND PRESSURE (mb) FOR
TiE WARM-YEAR OF THE NORTH AMERICAN CONTINENT

Middle latitudes Hih latitudes
km f2- I 2 2 1 22 ,F 2 -t 21Tf 12 3i(

3 1.120 1.640 0.46 0.64 0,392 0,560 3.341 4.870 0.92 1.36 2.615 3,750
6 0.710 1.000 0,46 0.64 0,520 0.740 2.251 3.236 1.10 1.56 1.894 2.694
9 0,.700 0.994 0.56 0.0 0,561 0.802 2.052 3.122 0,78 1.12 1.700 2,416
15 0.912 1.298 0.52 0.76 0,310 04444 1.500 2.130 0,62 0.92 0.885 1,264
20 0.231 0.335 0.46 0.66 0,135 0.192 0.374 0.528 0.62 0.42 0.258 0.368
25 0.397 0.422 0.47 0.67 0,193 0.274 0.412 0.588 0.83 1.18 0.284 0.406
30 0,108 0.154 0.56 0.82 0,073 0.106 0.396 0.566 1.48 2.12 0.280 0.400
35 0.058 0.082 0,70 1.00 0,042 0,060 0.109 0.155 1.29 1.84 0.090 0.128
40 0.059 0.084 1.10 1.56 0,043 0.062 0,076 0.108 1.29 1.84 0.056 0.086

45 0.021 0.030 0.83 1.26 0,016 0.023 0.045 0.065 1.33 1.94 0.035 0.050
50 0.011 0.016 0.98 1.40 0,009 0.013 0.0,34 0.048 1.43 204 0.025 0.036
55 0.014 0.020 0.82 1.18 0,013 0.019 0.043 0.061 1.34 1.92 0.033 0.047
60 0, 004 0.006 1.10 1.54 0,007 0.010 0.034 0.049 0.81 1,16 0.028 0.040
65 0.004 0.006 2.10 3.00 0,007 0.009 0.008 0.011 0,20 0.28 0.008 0,012
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Similar arguments can be presented also for determining the confi-
dence intervals of the root mean square deviations.

Table 3.10 presents the confidence intervals of the means
and root mean square deviations of air pressure, temperature, and
density that were considered above in'"order to describe the features
of the vertical statistical structure of fields of these physical
parameters of the atmosphere.

The confidence intervals for the wind velocity components are
found in Table 3.11.

TABLE 3.11. CONFIDENCE INTERVALS OF WIND VELOCITY
COMPONENTS (m/sec). WORTH AMERICA, WARM HALF-YEAR

H Middle iatitUdes [ High latitudes _

5 0.44 0.62 0,57 0,82 1.00 1.42 1.33 1,90
10 0,79 1.12 0.90 1,28 1,58 2.24 2,16 3,08
15 0.63 0.90 0,80 1.14 0.82 1,16 0.98 1,40
20 0.22 0.30 0.43 0.60 0.60 0.86 1.08 1,.54
25 0.20 0.28 0.53 0,76 0.76 1,08 1.83 1.90
30 0.26 0.38 0,77 1.10 0.56 0.80 1.64 2,34
35 0.32 0,46 1.07 1,52 0.63 0.90 1,87 2,66
40 0.36 0.42 1,20 1.70 0,62 0.88 2.08 2,98
45 0.43 0.66 1,50 2,12 0,78 1.12 2,84 t 4,20
50 0.34 0.48 1.76 2.20 0,74 1,06 2,84 4,20
55 0.56 0,70 1,92 2,74 0,98 1,40 3,73 5.32
60 0.76 1,08 2,11 3.02 0,98 1,4( 1,80 2,68
65 1.10 1.42 1,18 1,68 0.45 0.64 0.91 1.3,1
70 3.81 5.81 2.30 3.30

From Table 3.11 it follows that these statistical characteris- /98
tics exhibit a precision that is satisfactory for practical pur-
poses. The confidence intervals for the cold half-year differ little
from those presented above and therefore are not given here.

The root mean square error of the covariant matrix elements
rxy is determined by using the formula

1r2_, 
(y (3.30)
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Obtained under the assumption that the law of the distribution of
variables is normal. An investigation by Fisher /i57 shows that
the probability density of the correlation coefficient r has the
following form:

_, 2 2 2f n-2 dS((r) - 1r) (3-31)

From Eq. (3.31) it follows that the distribution of the correlation
coefficients is not normal. It depends not only on the size of
the sample n, but also on the correlation coefficient of the general
set rule. The distribution (3.31) approaches the normal distribu-
tion only for small r and for the large n. Under these conditions,
Eq. (3.30) is also applicable.

To determine the confidence intervals of tAe correlation
coefficient, Fischer proposed the transformation

= 1 +. (3.32)
2 1-r

The value of z even for small n is distributed normally with amea
mean and with dispersion, determined by using the approximate
equalities

m lz= 5+ D 1M21(n-, ; = n-3 (3-33)

where I 1 1-+
-- p " 

(3.34)

If we find the root mean square deviation of the z-transforma-
tion, we can determine the confidence interval of z:

I< Zo (335)

where z0 is the value of z for large n, and

Z 1 = z - kzz,

Z, = z + k az.

By determining zI and z2 , it is not complicated by means of
transformation (3.32) to compute the values of rl and r2 corres-
ponding to them for a specified probability. The latter defines
a precision of the computed elements of the correlation matrices.

Table 3.12 -dives the confidence intervals with a probability /
0.67 of the elements of the correlation matrices of air pressure,
density, and temperature, and of the wind velocity components for
the warm half-year in the middle and high latitudes.
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TABLE 3.12. CONFIDENCE INTERVALS OF
CORRELATION MATRICES. NORTH AMERICA,

WARM) HALF-YEAR

Middle latitudes -High latitudes
ro  P, P, t u, v p, p, t, u, v

r, r r, I r, r I  rg

0,1 0.18 0.02 0.15 0.05 0.21 -0.01
0.2 0.28 0,12 0.25 0.15 0,30 0.10
0.3 0,37 0.23 0.35 0.25 0.40 0.20
0.4 0.47 0.33 0.44 0,36 0.49 0,31
0.5 0.56 0.44 0.54 0.46 0.58 0.42
0.6 0.65 0.55 0.63 0.57 0.67 0.53
0.7 0.74 0.66 0.72 0.67 0.75 0.64
0.8 0.83 0.77 0.82 0,78 0.84 0.76
0.9 0.91 0.89 0.91 0,89 0.92 0.88

From Table 3.12 it follows that the highest error is charac-
teristic of the smallest values of the correlation matrix elements.
As their values approach unity, the precision rises appreciably.

The precision of computing a number of statistical character-
istics depends also on the random errors of measurement contained
in the initial data. From error theory we know that random errors
do not affect to the value of the elements in the reciprocal corre-
lation matrices, since the errors of the data dealing with differ-
ent elements, as well as, errors at different doints do not correlate
together. \ Moreover,. the random errors exceed the dispersion
elements of the autocovariance matrices by the value; of the root
mean square of the error. When interpreting the results of rocket
sounding of the atmosphere, we must also take intoi!"account that
for the same sounding the random errors of measurement, for example,
of temperature, correlate with the measured value of the element
owing to the accumulation of errors, one reason for which is the
inertia of the traisducers. As a result, the values of the correla-
tion functions of air temperature obtai ed in interpreting the
initial material proved to be overstated. The most widely accepted
method of cancelling out random errors is extrapolation to zero of
single-level structure functions. The available initial material
does not always enable us to obtain ihese functions and therefore
to use this technique. However, the random errok can be determined
if we use the properties of a simple Markov random process. _Their
applicability to the atmosphere was shown by M. I. Yudin L/.

The following equalities are valid for the simplr Markov /100
process: - 100

m, m + 1 m m+lm, m +1,

Rm, m + a= a mm+rm, m+m+ m+,2, (336)=, i ( ,+2 m m+ ,

Rm+l, m+2 O m+ld m+2rm+1m+2 (m 1,2, ... ).
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In equality (3.36) the corresponding statistical characteris-
tics obtained by the statistical interpretation of the initial data
are denoted with the sign - . Using equality ( .36), we can appro-
ximately determine the error contained in the estimates of the root
mean square deviations and cancel it out. Actually, assuming that
the errors in the values of the covariances are determined by errors
contained in the correlation coefficients, from equality (3.36) let
us determine the "true" value of the dispersion

2+ = Rm+2, +2Rm, m + (m= I, 2,...). (3. 37)

Then the dispersion of the random error , can be computed by
the formula

2 a2 (3.38)

n-1 2m+1 n+1'

25 30 35 40 45 50 55 60# k

Fig. 3.39. Root mean square values of random
errors of air temperature

Fig. 3.39 shows the root mean square values of random errors
of temperature obtained by means of relations (3.36) - (3.38). By
averaging the errors, we get the result that above 20 km the root
mean squares of the random temperature errors average 2-3 0 C. These
values agree well with the root mean square values of the random
temperature errors obtained, for example, by V. P. Boltenkov, which
in the layer from the ground level to 20 km were found to be 1-1.50C.
In conclusion, we know that after determining the dispersions of
the random errors it is not difficult also to correct the corres-
ponding correlation functions.
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CHAPTER FOUR /101

FORMS OF REPRESENTATION )OF ATMOSPHERIC PERTURBATIONS

4.1 Approximation of Autocorrelation Functions of Air Temperature
and Density and of Wind With Analytic Expressions

In Chapter Three it was shown that autocorrelation functions
of air temperature\in specific atmospheric layers, latitudinal
groups and half-years exhibit similarity, which makes it possible
to combine them into four groups with given features. Autocorrela-
tion functions of air density also can be divided into three homo-
geneous groups. First we consider jointly the autocorrelation
functions of air temperature and density, we note aD'high similarity
of the tropospheric and stratospheric autocorrelation functions of
these meteorological elements. Therefore the autocorrelation func-
tions of air temperature and density can be combined into four
groups.

Group I includes autocorrelation functions of temperature with
initial correlation levels at 3, 6, and 9 km, and air density with
initial correlation levels of 3 and 6 km, related to the middle
latitudes. They have the shape of a damped cosine.

Group II includes autocorrelation functions of air temperature
and density for the high latitudes with initial correlation levels
at 3 and 6 km. They have the same pattern as the functions in
group I, but differ from the latter by Itheir smaller amplitude.

Group III consists of autocobrdlation functions of temperature
for the middle latitudes with initial correlation levels at 20 km
and higher in the cold half-year, and also 15 and 20 km in the warm
half-year.

Group IV includes autocorrelation functions of temperature
that have initial correlation levels higher than 20 km in the warm
half-year in the middle latitudes, and higher than 6 km in the
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warm and cold half-year in the high latitudes, as well as autocor-
relation functions of air density with initial correlation levels
higher than 6 km in both latitudinal zones in the cold and warm
half-years.

Each of these groups of homogeneous curves can be approxi-
mated with a single analytic expression. Obviously, the curve
groups I and II are conveniently approximated with the expression /102

r(AH)= e ""cos (2AH, (4.1)

and curve groups III and IV -- by the equality

Sr(AH) = e-I. (4.2)

Tabl.e 4.1 gives the values of k and 0 obtained by the method
of least squares. The different values of the coefficients corres-
pond to the different groups of functions.

TABLE 4.1. VALUES OF k TABLE 4.2. ROOT MEAN SQUARE
AND go FOR AUTOCORRELA- ERRORS OF APPROXIMATIONS OF
TION FUNCTIONS OF AIR AUTOCORRELATION FUNCTIONS
TEMPERATURE AND DENSITY

Coeffi- ui tns Group 2 5 10 15 20

k - 0.040 0.094 0.157 0.0975 111 0.05 0.08 0.08 0.09 0.10

-1 IV 0.04 0.07 0.11 0.11 0.12o - 0.21 0,21 0 -

The results of approximations]of the functions in groups I
and II are plotted with a dashed line in Figs. 3.15 a and 3.16 b.

Table 4.2 gives the root mean square errors of the approxima-
tions for functions in group III and IV.

The root mean square errors of the appr ximation have about ~the
same valu elas the confidence intervals ' of the autocorrelation functions,
which indicates good agreement between the analytic and empirical
functions.

Analysis of the autocorrelation functions of wind velocity
component sjhows that their entire set can be divided into four
groups of homogeneous functions.

Group I includes autocorrelation functions of the meridional
wind velocity components for the warm and cold half-years in the
middle latitudes, and for the warm half-year in the high latitudes,
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and the zonal component of wind velocity for the cold half-year
in the middle latitudes, which have initial correlation levels at
altitudes 5-20 km.

Group II concludes autocorrelation functions of the meridional
component of wind velocity with initial correlation levels higher
than 20 km for the warm half-year in the middle and high latitudes.

Group III includes all autocorrelation functions of the meri-
dional and zonal component of wind velocity in the cold half-year
in the high latitudes, as well as the meridional component of wind
velocity in the cold half-year in the middle latitudes Jwith initial
correlation levels higher than 20 km.

Group IV consists of autocorrelation functions of the zonal /103
component of the wid'd velocity for the warm half-year in the middle
and high latitudes, as well as for the cold half-year in the high
latitudes above 20 km.

It is.1advantageous to approximate the functions in Group I
with expression (4.1), and those in groups II, III, and IV -- with
expression (4.2). Table 4.3 presents the coefficients in the
exponents for these groups of functions obtained by the method of
least squares.

TABLE 4.3. COEFFICIENTS OF EXPO-
NENTS IN THE AUTOCORRELATION
FUNCTIONS OF WIND VELOCITY OM-

PONENTS (20 = 0.08 km- )
Group of ,I II III IV
functions

k, km-1 0.100 0.190 0.055 0.0275

The precision of the analytic determination of these functions
can be judged from the values of the root mean square errors of
the approximation. They are given in Table 4.4 for the four groups
of autocorrelation functions of wind velocity components.

The root mean square errors given in Table 4.4 have approxi-
mately the same value as the confidence intervals of the autocor-
relations of wind velocity components.

In slveral cases, not only is the analytic form of the correla-
tion functions of the physical parameters of the atmosphere of
interest, but also the covariance)functions of these parameters.
The direct approximation in most cases is extremely difficult,
since the correlation functions of the physical parameters of the
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TABLE 4.4. GROUP MEAN SQUARE ERRORS
OF THE APPROXIMATIONOF AUTOCORRE-
LATION FUNCTIONS OF WIND VELOCITY

COMPONENTS

Grou of W
funfions 5 to is 20 251 .0 as

I 0.09 0.10 0.08 0.05 0.06 0.07 0.05
II 0.06 0.04 0.03 0.02 0.06 0.08 0.09
I1 0.05 0.08 0.09 0.08 0.07 0.07 0.06
IV 0.08 0.09 0.09 0.11 0.09 0.09 0,08

atmosphere (excluding air temperature) very usually by 3-5 orders
of increase in altitude intervals. However, these covariance jfunc-
tions could be described with analytic expressions if we are able
to find these expressions for the root mean square deviations of
the corresponding atmospheric parameters. The root mean square
deviations of air temperature and wind velocity components change- /104
very complexly with altitude, which hampers their approximation,
though in principle it is possible, for example, by using the
exponential orthonormalized functions examined below. The analytic
expression of the root mean square deviation can be readily derived
for air density. Actually, let us consider the function

ItP (H) = (H) (4.3)

in which a is the root mean square deviation of air density at
the group 19vel, and up (H) is its value at the altitude H if we
consider the values of the function fp(H) for these groups of lati-
tudes and half-years, it turns out that its variation with altitude
is described approximately by the exponential (Fig. 4.1)

P (H)= e-p' '' (e.-)

Therefore,

(H) a e- o.15H

When determining this expression it was assumed that o=.50 g/m 3 ,
which corresponds to the mean of the root mean square deviation of
air density at ground level.
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Eq. (4.5) smoothes /105
over several details of
the altitude distribu-

I tion of the root mean
square deviations of air

0,8 density in different lati-
tudes and half-years, but
closely describes the

0.6- general trend of their
variation with altitule.

04 €
Let us dwell on one

feature of the fields of
: physical parameters of

#2 - the atmosphere that
• ° 1follows from the proper-

ties of autocorrelation
10 20 30 40 50 60H km functions of air temper-

S- ature and density and

Fig. 4.1. Approximation of root mean the wind velocity compo-
square deviations of air density atm ospheric parameters

atmospheric parameters
are nonstationary random
functions of altitude.
Let us consider the

/ normalized function

(H) (4.6)

in which ((H) are centered functions denoting either temperature
or density of air, or else wind velocity component, and 4a(H) is
the root mean square deviation.

Let us find the mathematical expectation, the covariance ]func-
tion, and the dispersion of this random function. It is obvious
that

NM[(H)]=0, R,(AH)=r(AH), D,(H)=I (4.7)

Above it was shown that in each half-year in the middle and
high latitudes this atmospheric layer can be divided into two layers,
the first of which is the troposphere (the lower 20-km atmospheric
layer is the first layer for the wind velocity components) in which
the correlation functions of air temperature and density and wind
velocity components, being covariance jfunctions of the random func-
tions O(H) are identical in form, that is, their values are
determined only by the altitude interval AH. Referring to Eqs. /
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(4.7), we can conclude that within these atmospheric layers the
random functions O(H) can be considered as stationary, while the
obvious equalit

(H) = m, (H) + (H) (H) (4.8)

means that these nonstationary random functions (air temperature
and density and wind velocity components) can be expressed in
terms of nonrandom functions m~ (H) and a (H) and by th, stationary
random function O(H). The meridional and zonal wind velocity
components in the cold half-year in the middle and high latitudes
have the characteristic indicated above throughout jthe atmospheric
layer extending from ground level to the altitude 70 km.

It must be noted that the approximation of the correlation
function of the stationary random function by expression (4.2)
involves one unpleasant feature, which is that the function (4.2)
does not have a derivative at the point AH = 0. However, this /106
limitation is not essential for our purposes, since the small scales
of.. the .,fluctuations , in the physical parameters of the atmo-
sphere are not considered in the applications of this monograph.

In several practical applications it proves to be convenient
to represent the autocorrelation functions of physical parameters
of the atmosphere especially if they differ from the exponential,
with a Fourier series in which the exponential, orthonormalized'
functions are the basis functions.

The system of functions y1 (x); y2 (x); ... ; y~(x),

integrable on /1, b is or'.hogonal if the scalar product of these
functions satisfies the condition

(y, Yk) b 0 when i. / k
(YI, Y) = y(x) y(x)dx4 (4.9)

>0 when i = k

The system of orthonormalized functions /

where W(x); (x); ... ; (x),

.(x) = (4.10)

and /
(I Y, (y, y,)'/ = Sy (x)dx

J (4.11)
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is the norm of the function yi(x) can be brought into the corres-
pondents with the system of functions.

The system of functions ii(x) has the following property:

SO 0 when i k
(b, k) ,=0 (4.12)

a 1 when i k

The function f(x) integrable on _, b7 can be expanded in the
Fourier series

k(l = 1 a~x (4.13)

in which a are constants, and /k(x) are basis functions of the
orthonormalized system.

The coefficients al are usually expressed in terms of f(x).
Actually, let us multi ly both sides of equality (4.13) by Qn(x)
and let us integrate the resulting product in the limits from a
to b

,(x). a( a a(W)Wd(x)a. (4.14)

By virtue of equality (4.12), all the integrals of the right /107
side of Eq. (4.14) when k / n tend to zero. Therefore,

b b

a a
(x) ,,(x) dx = a, . 2(x) dx = a,, (4.15)

Equality (4.15) allows us to compute the coefficient of the
Fourier series if we know the system"'of orthonormalized functions.

Suppose we have two vectors:

X : x,; .; ... ; x,,

Y: yi; Y2; --. ; Yp.

Let us denote the smallest subspace X by Sx. The vectors
X and Y will be equivalent if for all p

Let us orthogonalize these 'vectors, that is, let us replace the
vector Y with some equivalent orthogonal vector. The orthogoniza-
tion process amounts to the following.

If we project orthogonally xp onto subspace Sp-1, we get
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XP = XpSp-1 + XpN,

where

Xpsp_ Sp-t; aXp,V ISp_ (p= 1, 2, ... ).

Let us set

YP = PXP (p = 1, 2, ... ,X ,v =x)' (4.16)

where Ap are arbitaryj.noPzero quantities.

Then vector Y will be equivalent and orthogonal to vector X.
However, we know /127 that

G
-p-1

X, = (xx)... (x_,xP ) x (p= 1, 2 ... , Go= 1), (4.17)

where G = the Gram determinant.

Setting A = Gp-1 in equality (4.16) and referring to equality /108
(4.17), for the elements of the orthogonal vector we will have the
following formulas:

(x 1, x) x,

(X2 ,x 1) X,

(x,, xi) ... (x t, x,) x1,
YP = . ..................... (4.18 )

in which as before the parentheses denote the scalar products of
the functions appearing in them.

Now let us find the elements of the orthonormalized detector
0 (x) corresponding to vector Y. To do this, let us determine
the scalar product (yp, yp). If we use Eq. (4.16), we get

(y,, yp) G2 1 (xPN, XPN).

It is known /1 7 that
G

(X,,', XPN) = , (4.19
9P-a (4.19)
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Therefore,

Thus, the desired elements of the orthonormalized vector
are determined by the equality

yp
(GG _ ==. (4.20)

Eq. (4.20) uniquely determines the orthonormalized system of vectors
specified by Eq. (4.10).

To construct the orthonormalized system of exponential func-
tions, let us assume that the vector X is given by the system

X((h); -; e-2 ch -p ch (>O0) (4.21)

and let us find the system of functions 0(h) corresponding to it.
Suppose the scalar product of functions xp with weight g(x) 1
is determined at I O0, o I Then

e- 2chdh e-chdh ... e-p cdh e- ca

. . . . -. ... . '. ) . . ... ' ."I. . . .. . . . .

or, after computing the integrals in the determining determinant, /109

1 1 1 -ch
2c 3c " pe-

y= 1 1 1 e-(p-'C" c (4. 22)
pc (p+l)c (2p--2)c

1 1 ,1 e-pc
(p+i)c (p+2)c " (2p - )c

In this case, Gp-_ is the algebraic complement of the element
standing at the intersection of the (p+l}th row land column. Obvi-
ously,

1 1 1

o T - P - - ... -PC (1) )and

I 1 1

(p+1)c (p+2)c ' (2p - )c
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Computing the determinants (4.22) - (4.24), using Eq. (4.20)
we can obtain a system of the specified number p of orthonormalized
functions which consist of specific combinations of exponential
functions:

'h(") IB--vcI (4.25)

Actually, when p = 1, Eqs. (4.22) - (4.24) ykeld

y (h) = e-; Go = ; Gz = e-2chdh 1
o 2c

Therefore,

', (h) = e - . ( 26
(4.26)

We similarly obtain, when p = 2,

c 7c
c e 2c 3c

3e - 2 h  c 2e ch  1
y., (h) = . G.= = g ,

I I-.h I

and /110

2(h)= 1/c (6e-2a -4e- (4.27)

Similar computations yield

%3(h)=176ie ch1- h Z 3eh; 1 (4.28)

,., (h) = 1/c (70e - 4"h - 120e - ch + 60e-2ch 8e-h); (4.29)

9., (h) = I/-Oc (126e -5h - 280e - 4ch + 210e-3ch _
S6Oe-ch + 5e-ch). (4 - 30)

These formulas coincide with the expressions obtained by another
approach by D. Kh. Lening and R. G. Batten Z/27.

Computing determinants of higher orders involves certain dif-
ficulties. Therefore let us examine another method of obtaining
the orthonormalized system of exponential functions.

Let us set up the linear combination

A,, +A +... + A,_,_ + A,

in which coefficients An are given by th/ formula:

A,? l3e nchdh; (4.31)
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and letlus determine the difference
n-1

K,= A, , - Z A,iP (4.32)

e-chObviously, Kn is a polynomial;of nth degree with respect to

In turn, in can be represented as

n=Qn + Nnij' (4.-33)

where Nn-1_I is a polynomial of the (n-l)-th degree in e-ch . There-
fore we have

n-I
S-ench+ - n-'. (4.34)K n = A,,Q.e-nech + A,,N,,_ - Al' .

Since AnQ = 1, Eq. (4.34) becomes

n

Ln = e- "'h _ 1 A,3,,
where

Lo= K, -. ANn_

for, if we consider equality (4.31),

L =e ,n (hI (h) ',(h)e " l"/ (n =1, 2, ).35)-h . - (4.35)

Comparing polynomial Ln(h) and yn(h) shows that they differ from /111
each other by la cofactor that depends on n. From this it follows
that

(L3 (46)

Ln (h) dh

Eqs. (4.35) and (4.36) are a set of recursion formulas enabling
us to easily calculate the sequence of orthonormalized exponential
functions of any degree.

The sequence of coefficients Bk can also be found by another
method proposed by A. S. Galkin and L. A. Mayboroda. It consists
of the following. If we use Eqs. (4.12) and (4.25), we get the
relation
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BBe- ich k B iBn

0 == =1 l=1

. 1 when k= m,

0 when k m.

Eq. (4.37) enables us to write out the system of algebraic
equations to determine the coefficients of Eq. (4.25). In general,
when there is a large number of terms in the series (4.25) the
system of equations is complex. However, if we analyze the sequence
of equation;'(4.34) we can note that the coefficient Bki are defined
by the expression

(k+ -l)!
v = (-) VZ ,! (, 1)! (k (4. 38)

Here the norm of function (4.35) is
- k! (k-1)!

I LkI = 1 V2kc (2k - 1)!

When computing the coefficients Bkv by this method, we can
use the following recursion relations:

)/-2k + 2 (k 4 )

B (k + )(k -,) BBk = - (,+ )( B ,,,.
k. v ( J- 1) h

Obtaining the system of orthonormalized function (4.25) we
can approximate the function f(h) with the series

N

f V , S I,, (4.4o)(h)= , (h) (4.40)

in which /112

S, = f(h (h) dh,
0

and the integral quadratic error of the approximation is

SN 2

= T ) Y S.,?,,(h) dh (4. 41)
n=1

or after several transformations

A= f2(h)dh- S.
:0 n I
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When capproximating the functions f(h) with orthogonal expo-
nential polynomials, owing to the finite number of the polynomials
the problem of selecting the value of parameter c crops up. One
of the approaches to the solution of c has been proposed in 3 7;
accordingly, the following sequence in selecting the coefficients
c is recommended:

subtract, if necessary, from function f(h) a constant so that
the resulting function Af(h) - 0 as h -; and

select the appropriate value of c so that the function e-ch

tends to zero at approximately the same rate/as the function Af(h).

However, this selection of the value of the coefficient c
cannot be regarded as rigorous since the number of terms in the
approximating series depend not only on the specified precision of
the approximation, but also on the value of A(c).

To obtain the value of c corresponding to A(c) = min, it is
convenient to use numerical methods. In particular, we can use
methods whose description is given in 7_7. It is also to use the
following iterative approach. Let us expand the function A(c) in
a Taylor series in the parameter c in the neighborhood of some
selected initial value of co bounded by the quadratic approximation

OC CO) 1 CO)2.

(C) = (Co) + (CO) (C - Co) + 2 ( c ) ( c - c o )  (4.42)

The minimum value of Eq. (4.42) is obtained when

de (Co) + dc (Co) (c ..- co) = 0

Hence the revised value of c c1 is

CIC A -, c (4.43)

Further, in Eqs. (4.42) and (4.43), instead of co we substitute/113
cI and we obtain c2 even closer to the optimal value. The sequence
CO, c1, c2 , ... tends to c, where Ac = min.

Extensi,'n (4.40), after the reduction of similar terms, is
transformed to become

N

(h)= (4.44)
91
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Fig. 4.2. Values of the integrand in Eq. (4.15)

Now let us assume that f(h) = r (AH) and let us find the
expansions of the autocorrelation functions of air temperature and
density that refer to the first two groups of functions, that is,
to groups differing from the exponential. Calculations show that
a fairly close approximation is attained for these functions if
we use only the five terms of series (4.44). To do this, as indi-
cated above, it is sufficient to determine five values of the
coefficients by Eq. (4.15). As applied to group II of the normalized
autocorrelation functions of air temperature and density, the values
of the integrands of Eq. (4.15) are given in Fig. 4.2.
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After computing the coefficients of the Fourier series, S , /114
and reducing related terms, we get autocorrelation functions op
air temperature and density in the form

r, (6H)= , veIc (4.45)

The values of coefficients wp and c are given in Table 4.5.

TABLE 4.5. VALUES OF THE COEFFICIENTS wg AND
c OF THE EXPANSION OF THE AUTOCORRELATION
FUNCTIONS OF TE1PERATURE AND DENSITY IN A

FOURIER SERIES

Group of Wi for /
functionsI c

1 0,040 -1,820 30,160 -121,101 168,060 -74,280
11 0,094 1,691 -22,146 62,092 - 60,358 19.740

As follows from equality (4.45), when AH = 0, we have
5

r, (AH= 0)= _,l =1.

Summing up the coefficients in Table 4.5 gives the values of ,
r4 (AH =0) very close to unity.

4.2. Noncanonical Expansions of Temperature and Air Density and
Wind Velocity Components

When solving several problems of analyzing and synthesizing
automatic control systems, a noncanonical dxpansion of some sta-
tionary random function (ih) refers to an expanslion of the form
Zf7TZ97

S(h)) (h)+ 7 cos Q*h + p sin 9*h, (4.46)

in which yand p are independent, normally distributed random
variables, and 2" is a random frequency that has some distribution
with probability density p(Q). Random variables y and 3 have the
following property:

98(4.47)
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Normalized centered functions O4 (h), where (h) denotes air
temperature and density and wind velocity component,, as shown /115
in Section 4.1, (can be approximately assumed to be stationary
randomlfunctions (we can judge the precision of this approximation
from the ratio between the root mean square error of the appro-
ximation of the covariance functions of each of the groups of
these functions by an analytic expression and by the confidence
intervals of the covariance functions). Accordingly, let us
examine noncanonical expansions of air temperature and density
and wind velocity components

?t(h) = t(h)--mt (h) cos* sin(4 48)

S(h)= p = (h cos *h + P, sin .bh, (4.49)

, (h) M -,, cos -*h + ,, sin 2h, (4.50)

V (h) v(h) (h) = , cos oh +P , sin ,h. (4.51)

As indicated above, random variables y and P are distributed
according to the normal law, that is,

P(T) e 2D (4.52)1(2=

p(P)= e (453)

Now let us find the distribution of random variables Q2*. To
do this, let us use the equality

1 (Ah) = M b (h) (h + Ah) = r (Ah), (4. 54)

which is one of the sets of equalities (4.7). Let us substitute
into Eq. (4.54) instead of (h),Itheir values f7om Eqs. (4.48) -
(4.51).1 Then referring to Eqs. (4.47), we get

r, (Ah) = DM (cos 0-Ah

Since D = 1 (this is evident if in the right-hand expression we set
h = 0), then

or r (Ah) = M (cos 2!Ah)

r (h)= Sp(2) cosAh d. (4.55)

The inverse transformation for Eq. (4.55) is of the form

p (2) = r (h) Ios iA/d (h) (4.56)
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In Section 4.1 it was shown that autocorrelation functions /116
of air temperature and density have the form of the exponential
(4.2) for stratospheric functions, and the form of a damping
cosine (4.1) for tropospheric functions, and that the autocorrela-
tion functions of wind velocity components are determined by
Eq. (4.2). Substituting Eqs. (4.1) and (4.2) into Eq. (4.56) and
integrating it, we get a distribution of the form

P()= (k2 +2)J (4.57)

For random variables 2* of noncanonical expansions of air tempera-
ture and.'density in the stratosphere and mesosphere, and of wind
velocity components, as well as the distribution

k2 + (L) )()0 )2 + (L (4

referring to air temperature and density in the troposphere. The
classification of Eqs (4.57) and (4.58) in a particular pysical
parameter of the atmosphere, half-year, and latitude is determined
by the' values of the coefficients k and 9 .

Distributions (4.57) - (4.58) can be expressed in terms of
a normal distribution. To do this, let us yxamine the two-para-
meter distribution

p()= = e 2 2e ' (4-59)

in which we denote

Then distribution (4.58) reduces to the distribution

p )e p = (4.66)

given the condition that

( n k2 + (Q - Q)?2_):2S(2)n 2) (4.61)

and

S21n + )
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Actually, if we substitute Eqs. (4.61) and (4.62) into distri- /117
bution (4.59), we will have

k [/ I = Inp

k 2 (--Q2 - o) 2 + ( k+( Q ,2

--

In the particular case when in Eq.(4.59) n0 = O, we have
the distribution

p()=/2 =p( (4.63)

to which the distribution (4.57) reduces if

-(2 In j .(k2 + Q-2) (4.64)

Distributions (4.60) and (4.63) are more convenient compared
with distributions (4.57 - (4.58) when we use, for example, the
interpolational method of analyzing automatic control systems,
which will be examined below, since in this case the distributions
of all random variables of the noncanonical expansion of atmo-
spheric pe'turbations are of the same form.

The distributions of frequencies of fluctuations in air tem-
perature and density and in wind velocity components, determined
by Eqs. 1(4.57) and (4.58), are expressed in Figs. (4.3) and (4.4).
The numbers alongside the curves correspond to specific groups of
autocorrelational functions of the,'physical parameters of the atmo-
sphere, that is, they indicate the particular layer of the atmosphere'
each latitudinal group, and each half-year to which each function
belongs (see Section 4.1). !he laws of the distribution of frequency
make it possible to determine which scales of fluctuations in air
temperature and density, zonal and meridional wind velocity compo-
nents prevail in specific atmospheric layers (we have in mind the
fluctuations of the meso-scale). To do this, we must compute the
probability P that frequencies of atmospheric perturbations Q will
fall in a specified interval of frequencies

- -Q- < - L P ()d. (465) 101
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Fig. 4.3. Distribution of fre- Fig. 4.4. Distribution of fre-
quencies of perturbations of quencies of perturbations of
air density wind velocity components

Computing the probability P by means of Eq. (4.65) reduces /119
to substituting in it Eqs. (4.57) and (4.58) and then integrating
in the specified frequency interval. The integration gives,
respectively,

P(i ) = -- krctg i , (4.66)

P (1_ <<9,)= arctgarctg (4.67)
k 

k Q<1 1 -1

The results of computing the probabilities of the frequencies of
fluctuations in air density are given in Table 4.6.

TABLE 4.6. PROBABILITIES OF FREQUENCIES
OF FLUCTUATIONS IN AIR DENSITY

Laye.r I Lati- , 21-_ 42 km  I

km tude .1 0,1-0.2 0.2-0.3 03-o0.41 .4-0., 1 0.-0.6

Middle
10-60 4 high 0.57 0.13 0.09 0.05 0.03 0,03

0-60 Middle 0,07 0,32 0.44 0,08 0.03 0.01 1 1
0-60 High 0.13 0.26 0,29 0,12 0,06 0,03
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From Table 4.6 it follows that in the stratosphere and meso-
sphere (10-60 km layer) in the middle and high latitudes in the
warm and cold half-years, the highest probability is noted for the
smallest (less than 0.1 km - 1 ) frequencies of fluctuations in air
density. The probability ofi higher frequencies (smaller wavelength)
drops off sharply. For xample, the frequency intervals 0.5-0.6 km-1
(wavelength 12.5-10.5 km) has the probability 0.03. If we examine,
in addition to the stratosphere and mesosphere, also the troposphere,
the maximum probability shifts toward the side of higher frequencies.
In the middle latitudes, for example, the highest probability falls
in the 0.2-0.3 km-1 interval (wavelength 31-21 km). The same shift
in probabilities along the frequency speptrum is observed also/ in
the high latitudes, although it proves to be more elongated there.

Table 4.7 contains the probabilities of the frequencies of
fluctuations in the zonal and meridional wind velocity components
(see Section 4.1 for the symbols of the groups of functions).

As follows from Table 4.7, for the zonal wind velocity com-
ponents in the warm half-year in the middle and high latitudes
and in the warm half-year in the high latitudes (IV), frequencies
less than 0.1 km-1 are prevalent, absolutely. The greatest proba-
bility, although still somewhat smaller in value, occurs at the
same frequency also for the meridional and zonal wind velocity
components in the cold half-year in the high latitudes (III).
A more uniform shift of probabilities along the frequehcy spectrum
occurs for the meridional component in the cold half-year in the
middle latitudes (I) and in the warm half-year in the high lati-
tudes (II).

TABLE 4.7. PROBABILITIES OF FREQUENCIES /120
OF FLUCTUATIONS IN ZONAL AND MERIDIONAL

WIND VELOCITY COMPONENTS

,,Group of Oi-i km 7
functions 0.1 [ ,1-0.2 1 0.2-0.3 1 0,3-0.4 0.4-0.5 0.5-0,6

1 0,40 0.27 0.11 0,06 0.03 0.02
II 0.31 0,20 0.13 0,08 0,05 0.04
11I 0,68 0,15 0,06 0.03 0,02 0,01
IV 0,83 0.09. 0,03 0.02 0.01 0,01

4.3. Canonical Expansions of Air Temperature and Density and of
Wind Velocity Components

In several cases it is convenient to represent the random func-
tion as a certain linear combination of uncorrelated random variables.
This combination contains nonrandom functions and is of the follow-'
ing form:
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t Mz (t) + .' (4.68)

In Eq. (4.68) we have designated: xv(t) are nonrandom functions,
called coordinate functions, and v. are uncorrelated random
variables such that M V 0

S[r ] .J.for.v

The representation of a random function in the form (4.68)
is customarily called thelcanonical expansion of the random func-
tion. In the general case, the canonical expansion,,of a random
function is an infinite series. When practical use is made of
canonical expansions, ordinarily a limited number of terms in
the series.(4.68) alre employed.

If we denote a centered canonical function by (tj then
obviously the covariance function of the random variable (t)
is

(, ) (4.70)

Referring to Eq. (4.68), we can rewrite Eq. (4.70) in the 121
form

In the last equality we used the property of the interchange-
ability of the mathematical expectation, and also the property of
random coefficients of the canonical expansion of random function
(4.69). We will have

RE (t,t')= Dx (t) x (t'). (4.71)

Eq. (4.71) is the canonical expansion of the covariance functions
of the random function (t). The equality

D:(t) = R (t, t')= D, [ (t)]'. (4.72)

is its particular case when t t', where D (t) is the dispersion
of the random function (t).

To determine the coordinate functions of the canonical expan-
sion of the random function, let us find the mathematical expecta-
tion of the product 1297
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A4[~(t)vj =M [VyJ nX, t). (4.3)

Based on Eqs. (4.69), all the terms in the right-hand side
of Eq. (4.73) are equal to zero, with the exception of the term
for which v= 4 . Thus,

which /ields

In order to determine the random coefficients of the canonical
expansions of the random function, let us represent them in the
form of a'linear combination of values of these centered random
function '(t)

a (475)

in which avh are arbitrary coefficients.

The random coefficients vV can be found if we know from the
values of avh. The coefficients ah are not difficult to determine
by using the following obvious equa ity:

(4.76)

When v/ , as follows from Eq. (4.69), the left-hand side of /122
Eq. (4.76) is equal to zero, that is,

a ha.,R;(ti, t,) 0 (4.77)h, I

The coefficients avh that satisfies the conditions (4.77) can
be selected, and by using an infinite set of methods, since the
number of Eqs. (4.77) is always smaller than the number of coeffi-
cients. For example, first we can determine the random variable I
v1 by arbitrarily specifying the coefficients alh, and then we can
find the coefficients a2 h so that the random variable v will not
be correlated with vI . rurther, we can determine all te remaining
coefficients anh such that the random value vn is not correlated
with the variabes vl, v2 , ... , vn-l. Thus, all the coefficients
anh can be specified arbitrarily, except for the coefficient a(n-l)h.
For example, we can specify

a,,= 1; a,, =0 when h v. (4.78)
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Then the remaining coefficients aVh (for h< v) will be computed
by means of Eqs. (4.77). Consequently, referring to Eqs. (4.78),
Eq. (4.75) will become:

V1 = (t ),

v-Iv,= a, (t.)-i( ) ( = 2,3,...). (4.79)

h=1

Setting v--,, in Eq. (4.76), we can determine the dispersion
DV. It will be expressed by the equality

D,= M [v - a a,,RI (t, 1,). (4.80)
h, I

If, moreover, in Eq. (4.74) we substitute the expression
(4.75), we will have

x D(t)= - (t, t). (4.81)

Now, to determine all the elements of the canonical expansion
of the random function, let us write out first iEqs. (4.79) and
let us compute the values of the dispersion and of the coordinate
function forv = 1. We get

v, = ( (tR); D,=R ( , and x (t)= -R (t,,t,), (4. 82)

and let us determine the variables vv from the recursion formulas /123
deriving from (4.79)

v (4.83)
- I

In order to find the coefficients cVh, let us set t = tv in
(4.68) and let us compare the resulting expression with Eq. (4.83).
We will have

C, - x ( i 1,2,..., v-14.84)
v=2,3,. .. (

and, moreover,

X t) = 1 ( = 1,2,.;.), (4.85)

and also

10 x (t 0 f or p > v. (4.86)1o6



Based on Eqs. (4.84), Eq. (4.83) can be written in the form

v-1

V, t - VhX 1 (t,) (v 22,3,..). (4.87)
n=1

From Eq. (4.87) there derives an equation for determining
the dispersions

-Il

Dz= R(t t)- Dh [xL(tI)] 2 ( = 2,3,...). (4.88)

Now it remains to write out in its final form the equation
for determining the coordinate functions. For this purpose, let
us substitute Eq. (4.87) into Eq. (4.74). With reference to
Eq. (4.69), we get

x,(t)= RE(t,,)- D,,xih( t)x, ) (v=2,3,...). (4.89)
h=1.

Eqs. (4.87) - (4.88), jdined with the first equality from
(4.82), constitute a system of formulas that enables us to deter-
mine successively all the elements of the noncalnonic expansioni
of the random function (t).

If as before we consider the normalized centered functions
of the physical parameters of the atmosphere

(H) - my (H)
()(H) (H (4.90)

the canonical expansion of the correlation functions of which are
of the form

r, (H, H') = 'I x, (II)x, (WH'), (4.91)

then the formulas for computing the elements of the canonical /124
expansion of these random functions will be of the following form:

0

v-1

'w,= , (H) -: wxiH(i) (v = 2, 3,...);
i=1

I v-

D:= 1- ) D;[i (H,)] ;

D1= (1, (4.92) 07
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TABLE 4.8. ELEMENTS OF CANONICAL EXPANSION OF AIR TEMPERATURE, COLD HALF-
YEAR, MIDDLE LATITUDES

;p (H)

0. o,20 0,15 020 0. 010 0 0,25 0,50 0.80 0,20 0.35 040 0.30 0.20 0.12 wpi D*pi
H km

6 9 15 20 25 30 M 40 45 50 55 60 65

1 1 0.3530 -0,0670 -0.7350 -0.3310 0.0190 0.0730 0.1530 -0,0810 -0,0310 -0,0810 0.0010 0.0310 0,0200 0,2000 1,0000

2 0 0,0167 -0.2428 -0,1452 -0.0671 0.0779 -0.0"251 0.0372 -0.0572 -0.1421 -0.0175 -0.0011 0,0148 0.1294 0.8754

3 0 0 1 0.2655 0,0914 0.0455 -0,0083 -0,0084 -0.0361 -0.0143 -0.0265 0.0506 0.0122 0.0112 0.1612 0.9953

4 0 0 0 0 1 0.5583 0.7032 0,6432 0.5602 -0.0831 -0.0952 0,0836 0.3895 0.6489 0.3399 0.3356 0,3380

5 0 0 0 0 1 0.3494 0,1720 0.1826 0,0935 -0.0201 -0,1401 -0.2637 0,0705 -0.0220 -0,0171 0.7583

6 0 I 0 0 0 1 0.1486 -0,0035 0.0413 0.0107 -0.0468 -0,1363 -0.3226 -0.1839 0,0175 0,7339

i !0 0 0 0 0 1 0,3888 0.2645 0.1581 0.0562 -0.0800 -0.3315 -0,1645 0.2611 0,8108

s 0 o 0 0 0 0 0 1 0.6612 0.4118 0,2947 0.1351 0.0359 -0.1697 0.4877 0,7221

9 0 0 0 0 0 0 0 0 1 0.4813 0.4226 0.3681 0.3451 0.2211 -0.1454 0,6083

S 0 0 0 0 0 0 0 0 0 0 1 0.5197 0.3975 0,2740 0,1980 0,2252 0,7088

1l 0 0 0 0 0 0 0 0 0 0 1 0.5068 0,3447 0.2528 0,1952 0,5908

00 0 0 0 0 0 0 0 0 1 0.4174 0.3050 -0.0188 0.5150

. 0 0 0 0 0 0 0 0 0 0 0 1 0,9116 0.0267 0,4008

1-1 . 0 0 0 0 0 0 0 0 0 0 0 1 0.0764 0.4160



TABLE 4.9. ELEMENTS OF CANONICAL EXPANSION OF AIR TEMPERATURE. COLD HALF-
YEAR, MIDDLE LATITUDES

" (H)

, 1.[ 1.6 1.2 1.1 0.8 0.8 0.6 0.6 0.4 0,6 0.6 1.1 1.3 1.2 " l D' *

H' kmi
3 6 9 j 15 20 25 30 35 40 45 50 5.5 60 65

1 1 0.6850 0.6410 -0.4390 0.2950 0.1400 0,0480 0.0870 -0.0400 -0.0680 -0,027 -0,0100 0,0300 0.0500 1 800 1.000

2 0 1 -0,6875 -0.5921 -0.1961 0.0737 0.1151 -0.0482 -0.0445 -0.1534 -0.0292 -0.0248 0,0178 0.0108 0,3670 0.5308

3 0 0 1 -0,1411 0.0160 - 0.0266 0.0526 -0,0669 -0,0918 -0,1565 0.1274 -0,0292 0,0425 0.0167 0.2985 0.8400

-t 0 0 0 1 0,5042 -0.0483 0,1480 0,1292 0,2358 0,1743 0.1751 0.0899 0,0723 0.0617 2,1496 0.6045

5 0 0 0 0 1 0.3300 0.2125 0.1392 0.1564 0.0272 0,0477 0.0316 0,0021 -0.0171 -0.7476 0,7387

6 0 0 0 0 0 1 0,6626. 0.5419 0,3566 0.2620 0.1948 0,0871 0.0421 0.0051 0,8635 0,8951

7 0 0 0 0 0 0 1 0.5068 0.1959 0.1894 0,1193 0,0768 0,0747 0,0404 -0,2758 0.5030

8 0 0 0 0 0 0 1 0.4567_ 0,4683 - 0.3467 0.1865 0,0177 -0.0157 -0,0208 0,5710

9 0 0 0 0 0 0 0 0 1 0,2057 0,2252 0,1694 0.0909 0,.0950 -0,1186 0.6864

10 0 0 0 0 0 0 0 0 0 1 0,5086 0,4141 0.3603 0,1917 0,3313 .7096

11 0 0 0 0 0 0 0 0 0 0 1 0,3815 0,2319 0,.2581 0.0801 0,6221

12 0 0 0 0 0 0 0 0 0 0 0 1 0,4456 0,3406 076830,7317

,13 0 0 0 0 0 0 0 0 0 0 0 0 1 0.4509 0,6134 0.7131

14 0 0 0 0 0 0 0 0 0 0 0 0 0 045096901

O
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TABLE 4.10. ELEMENTS OF CANONICAL EXPANSION OF ZONAL COMPONENT OF WIND VELO-
CITY. COLD -HALF-YEAR, MIDDLE LATITUDES

ovH
7,v

0.35 0.40 0.20 0,15 0.10 0.12 0.25 0.34 0.47 0.50 0.38 042 'l D*i
n k

5 10 15 20 25 o 35 40 45 50 55 60

1 1 0.7600 0,6700 0,4100 0.1500 0.0200 -0,0100 -0,1200 -0.0200 0,0000 0,0400 0,1000 0,3500 1,0000

2 0 1 0,5701 0.2803 0.1562 0,1771 0.1600 0.0265 0,1071 0.1420 0,.1648 0.2225 0,1340 0.4224

3 0 0 1 0,4055 0.0287 -0,0146 -0.1494 -0,1595 -0.1507 -0,1068 -0,0640 -0,0014 -0,1086 0,4138
4 0 0 0 1 0,4314 0,4014 0,2056 0,.0996 0.1380 0,0836 0,1298 0.0861 0,0141 0,7307

5 0 0 0 0 1 0.7329 0,5390 0,3571 0,2217 0,1752 0,0758 0.0279 0.0239 0.8309

6 0 0 0 0 0 1 0,9444 1,0723 1,0800 1,0600 1,1351 1,0400 0,0649 0,4222
7 0 0 0 0 0 1 0,5277 0.5517 0,4536 0.3603 0,2893 0,1722 0,3309

6 0 0 0 0 0 0 0 1 0,7232 0.5783 0,4225 0.6111 0,1912 0,2840

9 0 0 0 0 0 0 0 0 1 1,0655 0.9113 0.6644 0.1384 0,1890
10 0 0 0 0 0 0 0 0 0 1 0.8002 0.8091 0.1248 0.1043
11 0 0 0 0 0 0 0 0 0 0 I 0,8654 -0.1131 0,1068

12 0 0 0 0 0 j) 0 0 0 0 1 -0,1657 0,1410



TABLE 4.11. ELEMENTS OF CANONICAL EXPANSIONS OF MERIDIONAL WIND VELOCITY
COMPONENTS. COLD HALF-YEAR, MIDDLE LATITUDES

--i°- -- .. .. _
0.3 as 40 0,20 0 1 0.10 0.12 0.25 0,34 0,47 0.50 0,38 0,42 ul D*u

H. km-
I to10 15 20 25 30 i 5 40 45 50 Si 60

A----- ______ _____ ____ ___

1 1 0,7200 0,5400 0,2200 0.0300 -0.0050 0,0200 0,0600 0.1700 0.2100 0.1600 -0,0100 0,3500 1,0000
2 0 1 0,7292 0.1487 -0,0864 -0.1329 --0,0922 -0.0066 -0.0257 -0,0025 0,0930 0,0149 0,1580 0,4816
3 0 0 1 0.3290 0,0091 -0.1024 -- 0,1070 -0,2212 -0.1609 -0.2046 -0,1527 0.0224 -0,1043 0,4522
4 0 0 0 1 0,2895 0,1410 0,1213 0,0339 -- 0.0130 -0.062 -0,0214 -0,0585 0,0819 0,8919
5 0 0 0 0 1 0,5430 0,4178 0.2499 0,1062 0.0766 0.0382 0,1585 0.0805 0,9207
6 0 0 0 0 0 0 1 0,6705 0,5368 0,4142 0,3459 0,2452 0.0714 0,0883 0,6950
7 0 0 0 0 0 0 1 0.6107 0.4070 0.2815 0,2318 0.2659 0,1654 0,5040
8 0 0 0 0 0 0 0 1 " 0,6441 0.5223 0,4634 0.1511 0,1268 0,5274
9 0 0 0 0 0 0 0 0 1 0,7523 0,5565 0,5900 0,2039 0,5260
10 0 0 0 0 0 0 0 0 0 1 0,6844 0.6045 0,1087 0,3629
II 0 0 0 0 0 0 0 "0 0 0 1 0,8189 -0,0131: 04425
12 0 0. 0 0 0 0 0 0 0 0 1 0,1506 0,3093

• , ),,



Above c(H) denoted p(H), t(H), u(H), and dj(H).

In this case, to calculate the elements of the canonical
expansion of the air density, air temperature, and wind velocity
components, as follows Trom Eqs. (4.92), it is not the covariance,
but the corresponding correlation matrices, and the actual cano-
nical expansions of the listed atmospheric parameters that are
to be described by the equalities:

(H) = mH) H) + a, (H) n wx, (H); (4.94)
I=1

v(H) = m,(H) + , (H) wx,,,, (H); (4.95)
i=1

S(H) = m. (H) + , (H) wex, i(H). (4.96)
l=1

As an example, below we present the values of the elements
of the canonical expansions of air density and temperature, and
of wind velocity components, as well as the dispersions of the
random coefficients of the canonical expansions for the mid-latitude
cold half-year.

Tables 4.8 - 4 .11 contain the values of the centered normalized
functions of the physical parameters of the atmosphere, the random
coefficients of the canonical expansions, the dispersions of the
random coefficients, as well as the matrices of the coordinate func-
tions. In accordance with Eqs. (4.85) and (4.86), the matrices of
the coordinate functions are triangular with unit elements along
the principal diagonals. The first rows of these matric'es are
equal, as follows from the last equality of the system (4.92), to
the first rows of the corresponding correlation matrices.

If we assume the stationary approximation of the functions of /129
the physical parameters of the atmosphere 0(H), to describe the
atmospheric perturbations we can use the spectral canonical expan-
sions.

An expansion of the form /497

RY (AH) D cosS AU (4.97)
V=1

is the spectral canonical expansion of the covariance function of
a stationary random function O H. To this canonical expansion of
the covariance function there corresponds the canonical expansion II
of the random function
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a () cos QH + sin .,H, (4.98)
v=1

where sin ~yH and cos QVH are the coordinate functions, and o and
P are the random coefficients.

The spectral canonical expansion of the random function has
several features. It has unified coordinate functions and, there-
fore, is wholly determinate if the random coefficients, o n': which
as before the following conditions are imposed,are found: they
must be uncorrelated and, in addition, must be such that

M[ ] = M l,] = 0; D [] = D[ ,] = D,. (4.99)

To determine the dispersions of the random coefficients of
the spectral canonical expansions (4.98), let us express the dis-
persion of the random function O(H) by its spectral density S (Q

D,=2. S(-)d2. (4.100)
0

and let us divide the interval of integration into a series of
elementary intervals (2,_,, e,). We will have

D, = D (4.101)

In Eq. (4.101), we introduce the notation

/))L=2 .. IU " (4.102)

Let us substitute the value of Dg from Eq. (4.102) in ldace /130
of DV in Eq. (4.97), remembering that ki(AH)=r(AH)

r, (AH)= D cos AH =

2"cos 2 SH S (9)dg. (4.103)

The function Si' in the interval (2 vi71)does not change its
sign, and the Viue of Qzlies within the indicated interval. There-
fore, we can apply the theorem on the mean to Eq. (4.103). We
will have
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r, (dH)=2 S, () cos AHdQ

or

r. (AH)=2 S (0) cos ~AHd2.S CL(4.104)0

Eq. (4.104) is the Fourier transform of the spectral density
of the random function O(H). Therefore, the dispersions of the
random coefficients of the spectral canonical expansion (4.98) are
terms of the dispersions of the random function O(H) and are
determined by the equality

'; + 1

D = 2 S (2)d . (4.105)
v--I

They can be computed if we know the analytic expression for the
spectral density of the random function O(H).

Now let us consider the variables

, c a ,,, =s e(v= 1,2,...), (4.106)

in which ,= l'D is the root mean square deviation of the random
coefficients of the spectral canonica expansion, and X and c are
the sets of normally distributed random numbers with zero mathe-
matical expectation and unit dispersion. A sequence of these numbers
is set up on the basis of the random numbers Z9J uniformly distri-
buted in the interval Z5, 1j7. Obviously, the variables a~ and py
are random. Let us find the mathematical expectation and the
dispersion of these random variables. Based on the properties
of a mathematical expectation, we have:

.11 24= zAl I A = ' Ix -o, I =ey'j 0.;

Thus, the random variable avformulated from the root mean square /131
deviations of the coefficients of the canonica/l expansion (4.98)
of random function and of normally distribdted random numbers
exhibit the properties of coefficients of the spectral canonical
expansion and can be easily obtained.

Based on the foregoing, we can write the spectral canonical
expansions of the physical parameters of the atmosphere as follows:
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p(H) =m(H)+(H) + ( cos2,+ a,sin9,H),), (4.107)

n

t(H) = + (H) + ,(H , ( cos 2,H + sinP 2H), (4.108)

n

v (H) = m, (H) + (H ov 2( cos H + a, sin 2,H), (4.109)

i(H) = m, (H)+ ,, (H) ,, I cos 9, H+ sin ,H). (4.11o)

A comparison of Eqs. (4.105) and (4.65) shows that the dis-
persions of the random coefficients of the spectral canonical
expansions of these physical parameters of the atmosphere repre-
sent probabilities that the frequencies of the atmospheric peb-
turbations lie within certain intervalA and, therefore, take f
into account the features of the vertical structure of the fields
of thermodynamic characteristics of the atmosphere. The disper-
sions of the random coefficients of air temperature and density
are given in Table 4.12.

TABLE 4.12. DISPERSIONS OF RANDOM COEFFICE NTS
OF CANONICAL EXPANSIONS OF AIR TEMPERATURE AND

DENSITY

SGroup
I of 1 1 2 1 3 1 4 1 5 6 7 1 8 1 9 1 10 1 11

functions , km2l)
0.09 I 0.18 I 0.21, 7 I 0.31 I 0.45 I 0.54 I 0.63 1 0,72 1 0.81 0.90 1 0.99

I 0.203 0,527 0.101 0.039 0,021 0.016 0.007 0.006 0.005 0.005
11 0.113 0.241 0.266 0,155 10.066 0.040 0.020 0.014 0,010 0.008 0.007

111 0,332 0.213 0,117 0.088 0,040 0,029 0.028 0.025 0.012 0,008 0,008
IV 0,476 0,209 0,09( 0,046 0,038 0,030 0,025 0.018 0,011 0.,06 0,005

If we select as the convergence criterion the criterion

I-~ V < o,Il, i (4.111)

which derives from the confidence intervals and the precision of /132
the approximation of the correlation functions. of air temperature
and density, then the largest number of terms occurs for the expan-
sion corresponding to grout III of correlation functions, and the
smallest number of terms correspbnds to the expansion that is part
of group I of these functions, where theyftotal five in the latter
case.
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Dispersions of random functions of canonical expansions of
wind velocity components are given in Table 4.13. These data indi-
cate that (based on the above-indicated criterion) the fastest
convergence is observed for group IV, and the smallest -- for
group II.

TABLE 4.13. DISPERSIONS OF RANDOM COEFFICIENTS
OF CANONICAL EXPANSIONS OF WIND VELOCITY COMPO-

NENTS

Group 1 1 2 3 I 4 5 I 6 7 I 8 I 9 10 1 II

of kV km-
fuinctions ,unc09 0.18 I 0.27 1 0.36 I 0.45 .54 0.631 0.72 I 0.81 0.90 0.99

S 0,3381 0,2941 0.1291 0.0627 0.0372 0.0246 0,0182 0,0135 0,0111 0.0085 0,0061
11 0,2775 0,2040 0,1455 0,0881 0.0577 0.0342 0.0310 0,0214 0.0198 0.0139 0.0108

11I 0.05201 0,3000 0.0463 0,0344 00132 0,0094 0,0064 0,0023 1 0.0015 0.0013
IV 0.8152 0.08510,0333 0,0212 0,01450.008600069 0,0058 0.0043 0,0038 0.0022

4.4. jShaping Filters of Physical Parameters of the Atmosphere

One of the forms of the representations of random atmospheric
perturbations can be shaping filters. Filters that permit shaping
a random process whose correlation function is known, from white
noise, are called shaping filters.

The spectral density S'.()\of a stationary random function
O(H) (as was shown in Section .. 1, centered and normalized values

of air temperature and density and wind velocity components as
functions of altitude can be placed in the class of stationary
random functions) ca' be represented as a rational-fractional func-
tion 2 and can be written in the form of the product of two co-
factors:

S, (9) = S, (p) G, (Q.) (4.112(),

Cofactor SI(Q) contains zeros and the poles of the function
S ,), lying in the upper half-plane and is a bounded and analytic
function in the lower half-plane. Conversely, cofactor G1 (Q)
contains zero ' and poles of the function S..( ),ocated in the lower /133
half-plane and is a bounded and analytic function in the upper half-
plane. Forreal values of 2

where the overbar denotes a complexly-conjugate variable and, thus,

S( 4 )= S (92)S()= is()12. (4.113)
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Therefore, the function S1(Q) exhibits all the properties of
a frequency transfer function of a stable linear stationary minimum-
phase system.

If white noise exhibiting, as we know, a constant spectral
density and the correlation function

R, (h) = 6 (h),

where 6(h) is the delta-function, is passed through a filter that
has a frequency transfer function 1(iQ), the spectral density of
the output signal obviously will be

S (2)I (4.114)

Comparing Eqs. (4.113) and (4.114) we can easily show that a
random process can be obtained from white noise if the latter is
passed through a shaping filter whose frequency transfer function
is defined by the expression

O((ie) = st (2). (4.115)

If the white noise has a single intensity, the spectral den-
sity of the white noise is 1/2Tr. In this case the spectral density
of the output signal differs from Eq. (4.114) by the cofactor
1/2 r , that is,

S 2)=- (i) (4.116)

or
1 2 (  1 H(- i) H(- iQ)S, (2) = -1 S, (-)S, (" 2n -F(i) F(-i)'

where H(iEt) and F(i2) are polynomials in Q, in which all zeros are
in the upper half-plane symmetrically with respect to the imaginary
semiaxis. In addition, the zeros of each of the polynomials H(it)
and F(iM) are pairwise conjugate complex numbers lying in the left
half-plane of :the variable ia. Therefore, all coefficients of the
polynomials H(i) and F(iM) are positive, the frequency transfer /134
function of the shaping filter is

(4.117)

and the stationary random function O (h) is associated with the
white noise v by the linear differential equation

F(s) = H (s) (4.118)

117



In Eqs. (4.118), F(s) and H(s) are polynomials in the differ-
entiation operator s = d/dh with constant coefficients

F(s) = as" + a, _s -'I+...+a,s+a

H(s) = b,s" + ,_,sn-i +...+bs+bo. (4.119)

Now let us examine the shaping filters linking the physical
parameters of the atmosphere with white noise.

In Section 4.1 it was shown that centered and normalized
values of air temperature and density and wind velocity components,
being functions of altitude, can be placed in the class of sta-
tionary random functions, and depending on the atmospheric layer,
their correlation functions are determined by the equality

-k) h (4.120)
r (Ah)= e

or by the expression

r, (Ah) = e- h cos 0  (4.121)

If the correlation function of the above-listed random func-
tions is expressed by the exponential (4.120), the normalized
spectral density is

1I k
S (t2) - k+ (4.122)

Obviously, Eq. (4.122) is equivalent to the expression

1 ()(4.123)

By comparing Eqs. (4.123) and (4.116), we see thatvthe random
function 4 can be viewed as the result I of the indefinitely long
passage of unit-intensity white noise through a shaping filter
having the frequency transfer function

i k+ i ' (4.124)

Now let us compare the frequency transfer functions (4.124) /135
and (4.117). Obviously, the polynomial H(iQ) is of zero degree,
and the polynomial F(iM) is of the first degree. Thus, Eq. (4.118)
becomes

S d (4.125)
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where
a, = k; a,= 1; b0 = k

For the cases when the correlation function of a random func-
tion is described by Eq. (4.121) (groups I and II are correlation
functions of air temperature and density), the spectral density
is of the form

S, () k 3+ 2(' . (4126)

The numerator of Eq. (4.126) has two purely imaginary roots '= -i
But the denominator has four complex groups 2- = +Q0 +ikl which
lie symmetric relative to the real and imaginary axies. By select-
ing the roots lying on the upper half-plane, that is, Q=ii and
Q= =L 0+oikjlet us write out Eq. (4.126) for the real values of 2,
which will be of the form:

S. () 2k1 +, I - (4.127)2 ,- t- 2kiLM + (iE)

Like (4.123), Eq. (4.127) shows that the random function
(h) can be regarded as resulting from the passage of white noise

through a stationary linear system (shaping filter) whose frequenicy
transfer function is expressed by the equality

("(2) -when ,a 2 . (4.128)

Since the numerator in Eq. (4.128) is a polynomial of the first
degree, and the denominator is a polynomial of the second degree,
the equation linking the random function 0(h) with white noise
v is of the form

'12 +1(11 (i) dv

CA2"-+ + /Ua,?(.,)= , +hbv. (4.129)

in which
2k =2-; 2

= i: k VK h,= .

Table 4.14 gives the values of the coefficients of differential/136
equations (4.125) and (4.129) for different groups of correlation
functions of air temperature and density (the number of the func-
tion group, as indicated in Section 4.1, corresponds to a specific
atmospheric layer, different latitudes, and different half-year
periods).
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TABLE 4.14. COEFFICIENTS TABLE 4.15. COEFFICIENTS
OF DIFFERENTIAL EQUATIONS OF DIFFERENTIAL EQUATIONS
LINKING FLUCTUATIONS IN LINKING FLUCTUATIONS IN
AIR DENSITY AND TEMPERATURE WIND VELOCITY COMPONENTS
WITH WHITE NOISE WITH WHITE NOISE

Coef- Group of functions Coeffi-( Group of functions 3
ficient I II II V I cient I _ t ni s

a0  0,0475 0.0529 0.1570 0,0975 ao 0,0164 0.1900 0,0550 0.0275
a, 0,0800 0.1880 1,0000 1,0000 a, 0,2000 1,0000000 1,00(0 1,0000
a 1,0000 1,0000 - - a2 1,0000 - - -
bo 0.0620 0.1005 0.5648 0,4425 bo 0.0575 0,6102 0,3321 0.2352
b, 0,2840 0.4350 - - b1 0,4478 - - -

The corresponding functions for the meridional and zonal
components of wind velocity are in Table 4.15.

In Table 4.15, just as for air temperature and density, the
number of the correlation function group determines the wind
velocity component, the atmospheric layer, the latitudinal group,
and the half-year. The placement of each of the groups correla-
tion functions of wind velocity in the above-listed situations is
determined in Section 4.1.

4.5. Representation of Atmospheric Perturbations Using Eigenelements
of the Correlation Matrices of the Physical Parameters of the Atmo-
sphere

An expansion of atmospheric perturbations in eigenelements of
the correlation matrices of the physical parameters of the atmosphere,
or in the principal components is highly attractive. It is shown
in 4j that these expansions are optimal. :Moreover, in several
cases the elements of these expansions can be given a definite
physical mean. Therefore, expansions in eigenelements of correla-
tion matrices are finding growing use of late.

Let us represent the normalized centered function referring
to some physical parameter of the atmosphere (t, H) in the form
of the series 1 (4.130)

Eq. (4.130) is the discrete representation of the function 0(t, H) / 1
(the subscript ' will be omitted in the following treatment).
Therefore we can introduce the notation:
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S(t, H) = . (i = 1, 2,..., m),
, (H) = u,j (j = 1, 2,...., n),

z ()l=1, 2,...).

We will seek Eq. (4.130) in the class of the optimal approximations
to the function dij in the sense of least squares. To do this,
let us find the minimum of the expression

At -Ul (4.131)

Let us assume that the functions zVi and uvj are orthogonal,
that is,.

~ZVzlz =O for

U jII - for& vi : I f or P.

Then Eq. (4.131) can be rewritten thusly:

To determine the minimum of Eq. (4.132), it is necessary to set
equal to zero the derivatives dA and OA As a result, we get
these expressions OZ I d,"

Tz = Zv z , (4.133)

?juj = ZV U'" (4.134 )
1 I

Suppose the functions uvj arle normalized, that is,

Vu= i. (4.135)

Then

z, = ? . (4.136)

Substituting Eq. (4.136) into Eq. (4.133), and using the notation /138
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(4.137)
and

/ = , k, (4.138)

we arrive at the equality

, . (j= , 2,..., ) (4.139)

which in matrical expression is of the form

rt = I. (4.140)

Obviously, in Eq. (4.140) A are eigenvalues, and u are the corres-
ponding eigenvectors\of the correlation matrix r. Eq. (4.140)
means that we are seeking for such a vector u that is trans-
formed by the matrix r into vectors differing from the initial
vectors by the scalar multiplier X. The matrical equation (4.140)
in the expanded form can be represented thusly:

(r - ) u, +r,Iu. +...+riu, = 0(r,u, + (r, - ) u. +... r.,nu = 0

(. ........ ' .......

r,,u, +r,,u +...+ (r,, - )us =(, 0

These equations as we can see comprise a system of linear equations
in ui . A nontrivial solution to this system exists 'if and only if
X are the roots of the characteristic equatio

r - ),E = 0. (4.142)

Correlation matrices of the physical parameters of the atmo-
sphere are real symmetric matrices. Therefore the eigenvalues
are also real. In addition, to satisfy Eq. (4.137), they must be
positive.

Using the orthogonal transformation, correlation matrix r
can be reduced to the diagonal form. If T is the orthogonal matrix
of eigenvectors, andiT* is the transposed matrix corresponding to
it, then

71rT = A (4.143)
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where A is the diagonal matrix with elements X1,, , h,- t in
decreasin order. This requirement on the arrangement of XV( = 1,
2, ... , n is customary and achieves uniqueness. If we take the /l9
determinant of the matrix in Eq. (4.143), we get

A = IT*I rllT = Ir (4.144)
and, therefore,

(rl = X,, . X .. X . - (4.145)

Eq. (4.145) shows that if we know the eigenvalues of the correla-
tion matrix, it is not difficult to compute the determinant of
the latter. Multiplying Eq. (4.143) at the right by T* and at the
left by T, we get

r= TAT. (4.146)

The matrix that is the reciprocal of matrix r is

S =TT*. (4.147)

The latter equality can be used in finding a matrix that is
the reciprocal of the correlation matrix when we know the eigen-
values and the eigenvectors of the correlation matrix are known.
In addition, from Eq. (4.143) we can obtain an important property
of correlation matrices. To do this, let us take the trace of
the matrix Ain Eq. (4.143)

SPA= S (T*rT) = SP (r TT* ) = SP (rE) (4.148)

Eq. (4.148) indicates that the sum of the elements along the
principal diagonal of the correlation matrix is equal to the sum
of its eigenvalues.

As indicated above, the eigenvalues are the roots of the
characterist c equation (4.142), which is an equation of degree n
in . After they have been computed, we can solve the system
of equations (4.141) for determining the eigenvectors of matrix r.
Actually, by assuming the system (4.141) successively 'X=X1,X,- 1and so on we get n different solutions to system (4.141), which
then will represent eigenvectors of the correlation matrix r:

1tU ; ti,; Ui ..; U n (for )

It,; . t ;...; (f .(or.
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TABLE 4.16. EIGENVALUES ,iAND THE EIGENVECTORS OF THE CORRELATION MATRIX
OF AIR--DENSITY CORRESPONING TO THEM. MIDDLE LATITUDES, COLD HALD-YEAR

2 3 2 6 7 f 9 10 11 12 13 14

km
S 31028 2,4611 2.0914 1.3153 0.9993 0.7812 0,846 0.66537 0.5203 0,4617 0.3204 0,3091 0.2270 0.0717

3 -0,1239 0,4076 -0.2604 0.3382 0,0373 -0,3581 0,1276 -0,4011 0,0225 0,0858 -0,1320 -0.0354 -0.1075 0,5397
6 --0.1202 0.3130 -0,1955 0.3367 0.2326 0,4104 -0,0081 0.6331 -0,1189 0.2068 0,157L -00056 0.0250 0,1744

9 0.0438 -0,1587 0,1031 0.1486 0.9132 -0.1347 0.1166 -0,1199 0.1306 -0,0332 -0,0003 -0,0921 -0,0234 --0,1815

i1 0.2253 -0,4991 0.2193 0,0135 0,0975 0,0997 -0.2139 0,0185 -0,1751 -0,0896 0,1609 0.2344 -0.0935 0,6768

2 0.1138 -0,4532 -0,0366 0,2564 -0,1656 0.1199 0,4082 -0,0184 0,1459 0,5853 -0.2968 0.1825 0,1379 0,0385

25 (1.0341 -0,2997 -0,2151 0,4086 -0,1680 -0.5485 0.1736 0.3886 -0,1508 -0.3537 0,1228 -0,0177 -0,0358 -0,1456

30 0.0860 -0,1846 -0,4890 0,2493 -0,0139 0,1237 -0.6676 -0,0680 0,3235 -0.0179 -0.2567 0.0184 -0.2203 -0,1345
35 0,2351 __0,0743 -0.4979 0.0413 0.0323 0.1780 0.0461 -0,3951 -0.3264 0.0830 0.4811 -0,1475 0.3195 -0.1728

40 0.3191 0,0169 -0,3552 -0,2447 0,0575 0.3035 0,3652 0.0349 --0.0712 -0,4595 -0,2931 0,3311 -0,2076 0,1641

45 0,3904 0.1197 -0,1893 -0,2757 0.0058 -0,1703 0.1713 0.2375 0,4665 0,1070 -0,0274 -0,6068 0,0651 0.0030

50 0.4400 0.1340 0,0032 -0.1824 -0,0188- -0.3116 -0.1779 0.1245 0,0734 0.3268 0.3816 0,5557 -0,1930 0,0812

55 0,4252 0,1990 0.1396 0,0798 0,0708 -0.1559 -0,2618 0,0863 -0,3986 0,0120 -0,4953 0,0132 0.4932 -0,0250
60 0,3770 0.1754 0,2762 0.3195 -0.0872 0,1477 0,1190 -0,1306 -0,2422 0,0929 -0,0245 -0,2678 -0,6095 -0.2814
65 0,2644 0,1543 0.2986 0.4219 -0,1565 0.2205 0.0509 -0,1176 0,4866 -0.3572 0,2307 0.1456 0.3290 0.0496



TABLE 4.17. EIGENVALUESX4, AND THE EIGENVECTORS OF THE CORRELATION MATRIX
OF AIR TEMPERATURE CORRESPONDING TO THEM. MIDDLE LATITUDES,' COLD PERIOD

! j2 637 4 5le 8 9 10 11 12j 13 1

k I I M 3,4721 3.0541 1.9542 1,1174 0.9327 0,6365 0.5274 0.4702 0,4268 0.3969 0A3307 0,2914 0,2174 01720

3 -0,0364 0,4598 0.0723 0.2467 0,2311 -0,0801 0.2446 0,1986 0,1225 -0.2695 -0,2718 0,5297 -0.3420 0,0544
6 -0,0721 0.5076 0,1049 -0,0331 0.1441 0.0282 0.0220 0.0015 0.0708 0.2739 -0.0928 0;0442 0,5048 -0.5980

9 -0,1001 0,5034 0,0729 0,0119 0.0265 0.1849 -0,1580 -0.0053 0,0857 0,2407 0.2743 -0,1078 0,1115 0.7098

15 0,1564 -0.4001 -0,1182 0.4352 0.0132 0,0807 0.0521 0,0808 0,2981 0.2783 0,0455 0,4731 0,4195 0,1647

20 0.1441 0,1316 -0,1543 0,8093 0.0687 -0.1388 -0,0756 -0,0873 -0,1524 -0,0517 0,0784 -0,4408 -0,0889 -0,1078
25 0,2840 0,2215 -0,3139 -0,0699 -0,3678 -0,2360 -0.1129 -0.2393 -0.4829 -0.2423 -0,0480 0,3222 0.3401 0.1080

30 0.3152 0,1734 -0,3204 -0,0968 -0.4070 --0,1431 -0.0174 0,0147 0.3472 0.4227 0,1771 0,0658 -0.4575 -0,1662
35 0,3829 0,1184 -0,2807 -0,1806 -0.0266 0,0469 0.2281 0.2733 0.3894 -0,2803 -0.3314 -0,3937 0,3063 0.1276
40 0.3533 0,0291 -0,1688 -0,0180 0,1987 0.7972 -0,2416 0,0328 -0.2305 0.0005 -0,0396 0,1040 -0,1652 -0.1348

45 0,4018 -0,0637 0,0701 -0,1444 0,3712 -0,1995 0.3173 0,2359 0,2012 -0,0832 0,6516 0.0341 -0,0226 0,0328
50 0,3772 -0,0238 0.1919 -0,0994 0,3992 --0,1904 0,1207 -0.5410 -0,0515 0.3740 -0,3944 -0.0367 -0,0626 0,1098
55 0,3086 -0.0016 0,3913 -0.0107 0,0519 -0,1813 0,6816 -0,0407 0,3556 -0.3224 0,0948 0,0768 0,0171 -0,0639

60 0,2387 0.0174 0,4752 0.0749 -0,3047 -0.0503 -0,0357 0.5691 -0,3363 0.3068 -0,2738 -0,0704 0,0194 0.0588
65 0.1755 0,0339 0.4599 0,1260 0,4407 0.3276 0,4421 -0.3695 0,1390 -0.2316 0.1574 -0.0214 0.0131 -0,0495



TABLE 4.18. EIGENVALUES , AND THE EIGENVECTORS OF THE CORRELATION lMATRIX
OF THE MERIDIONAL WIND VELOCITY COMPONENTS. COLD HALF-YEAR, MIDDLE LATITUDES

S2 3 4 5 6 7 8 9 10 11 12

4.0030 2o5176 1,8315 0,9775 0,6990 0,4997 0.3990 [ 0,3798 0.2673 0.1920 0.1741 0,1193

5 0.1065 0,5040 --0.0816 -0,1936 --0.1522 -0,4931 0,1170 0,4789 0,1733 -0,3709 0.1063 0.0464

1 0.0823 0,5621 --0.0709 -0.1493 --0.1820 0,0823- -0,0489- 0.0404 --0;28981 -0,5645 --0,4350 0.1185

15 0,0259 0.5338 -0,1152 0.0370 -- 0,1104 0.5097 --0,1729 0.4006 0.1562 -- 0.3130 0.3226 -0,1040

2(0 0,0419 0,2327 -0.3524 0.4977 0,7340 --0,0180 -0,2141 -- 0,1498 -0.0222 0.0443 -0.0378 0,0792

25 0,1760 --0,0896 --0,4838 0,3920 --0.3841 --0,4116 0,2336 0,4196 --0,0098 0,0649 0,0650 --9,1307

0,2942 --9.2025 --0.4143 --0,0529 --0,1970 0,0986 --0,6571 -0,2166 -0.2853 -0,2078 --0,1518 0,1511

35 0.3452 --0,1558 --0.3397 0.1734 --0,0465 0,3645 0,2259 --0.3552 0.4589 0,3366 0,12-16 --0,2437

4-10 0,3907 -- 0, 1010 -- 0,1170 -0,3613 0,2274 0,1231 0.5923 0,1863 -- 0,3876 -0,2610 0,0987 0,3330

45 0,4201 0,0073 0.1448 --0,1922 0,2569 -- 0,1864 --0,1553 0.3500 0,3770 --0,1677 --,.5338 -0,2510

50) 0,4132 0.0481 0.2611 -0,0474 0,1075 -0,2710 -0.3344 0,1381 0.0729 0.4076 0.5461 1 0.2665

55 0.3826 0,0687 0,3399 0,2558 -- 0,3105 0.0600 0.0571 -- 0,2048 -- 0,4674 -- 0,0583 0,0962 -0. 6220

60 0.3104 -0.0136 0.3335 0.5191 -0,2719 0,2257 0.1526 -0,1368 0.2298 -0.1316 --0,2216 0.4853



TABLE 4.19. EIGENVALUES ( AND EIGENVECTORS OF THE CORRELATION MATRIX
OF THE ZONAL WIND VELOCITY COMPONENTS. MIDDLE LATITUDES, COLD HALF-YEAR

1 f3 4 5 f 6 f 7 8 9 1 2 II

Skm
5.6721 2,8954 1,4951 0.6(05 0.3172 0,283. 0,2142 0.1722 0.1648 0.1024 1,0447 0,0351

5 0.0272 0.4963 --0.1711 --0,3275 --0,6539 0.0320 --0.3869 0,1815 0,0225 0.0636 -0,0168 0,0167
10 0,0572 0,5109 --0,1714 --0,2994 0,0901 0,0033 0,7012 -0.3179 0,1071 0.0511 0,0377 0.0162
15 0.0263 0,5130 --0,1460 0.0116 0.6896 --0,1462 --0,4339 0,0847 --0,1462 -0,0024 0,0150 --0.0264
20 0.0913 0,3973 0,2100 0,8036 -0,2426 --0,2549 0.1042 -0,0525 0.0246 --0.0449 --0,0029 0,0633
25 0.1809 0,1808 0,6405 --0.1410 0,0202 0,4623 --0.1005 --0.2047 --0,1410 --0,4427 0,1427 --0,0448
30 0,3404 0,0512 0,4103 -0,0404 0.1044 0,1689 -0,0094 0,1419 0.2306 0.7432 --0.2147 --0,0179
35 0,3574 --0,0291 0,2334 --0,2487 0.0167 --0,4970 0.2512 0,5863 -0,1255 -0,2803 --0.0628 0.0266
40 0,3724 --0,1425 0,0312 --0,1443 --0.0058 -0,4192 -0,2706 --0,4533 0.4442 --0,0468 0.3170 0,2543

45 0.3939 --0,0885 --0,1307 0,0004 --0.1026 -0,1662 --0.0681 -0,3543 -0,3312 0,0296 -0.2538 --0,6903

50 0,3856 -0.0747 --0,2144 0,0450 --0.0295 0,1559 --0,0011 --0,1475 --0,4988 0.0384 -0,2709 0,6535

55 0,3773 -- 0.0419 -- 0,2691 0,1596 -- 0.0699 0,2673 0.0937 0,2536 -- 0,1351 0,1353 0.7477 -- 0.1347
60 0,3544 0.0009 -- 0.3264 0,1595 0,0822 0,3496 -0,0064 0,1822 0.5506 -0.3762 -- 0.3608 -0.0179
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Thus, the elements of expansion (4.130) proved to be deter-
minate. Practical methods of ob'Laining eigenelements of correla-
tion matrices can be found, for example, in 73,7.

Tables 4.16 - 4.19 contain the eigenvalues and the eigenvec,
tors of correlation matrices of air temperature and density and
of wind velocity components.

It is not difficult to see that for all of these atmospheric /144
parameters considered, the sums of the eigenvectors are extremely
close to the traces of the corresponding correlation matrices.
A small difference in the fourth decimal place is determined by
the specified precision of computations and by rounding-off.

Fig. 4.20 gives the coefficients of expansions (4.130)
(principal components) computed for the profiles of air tempera-
ture, air density, and meridional and zonal wind velocity compo-
nents indicated in Tables 4.8 - 4.11.

TABLE 4.20. COEFFICIENTS OF EXPANSIONS
OF AIR TEMPERATURE t AIR DENSITY P,
MERIDIONAL u, AND ZONAL v WIND VELOCITY

COMPONENTS

z t p U V

zi 2,0421 0.8646 1,0335 0.9860
z2 2.2787 -0,0392 0.4842 0,4143
z3 1,2696 -0.7350 0.1167 -0.3479
z4 1.3934 0,3650 -0.1347 -0.1187
z5 0,9247 0.1616 -0.0921 -0,0319
z1 0.0469 -0,0250 0,0265 -0.0048
zr 0,2286 -0.2010 0.0126 0.0329
8 0,4349 -0,0368 0,3179 -0.1322

z, 0.8338 0.0039 -- 0,0469 -0.0608
z 10  0.3390 0.1046 0,0425 -0,0732
z11 -0,2192 0,2580 0.2871 -'-0,0273
z12 1.1289 -0,0243 0,2579 0.0466
zia 1.6052 0.0814 -
z 14  0.1189 0,0617

We can suggest another extension of the physical parameters
of the atmosphere, somewhat different from Eq. (4.130), based on
the eigenelements of the corresponding correlation matrices.
Suppose we have a vector oflinitial values of parameter . Let
us determine the orthogonal transformation

S= (4.149)
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where T as before is the orthogonal matrix, and let us find the
dispersion of the variables (4.149), denoting it by A. Obviously,

A = M yy* = M IT*I*TJ = T*rT. / (4.150)

By comparing Eqs. (4.150) and (4.143), we see that if we take
in transformation (4.149) the matrix of eigenvectors as the ortho-
gonal matrix, then the corresponding eigenvalues of the correla-
tion matrices of initial parameters are dispersions of the new
variables y ( = 1, 2 ... , n).

In order to obtain the p-th principal components z, we will /145
normalize the variables y.. This means that we will adjust them"
so that the dispersions are equal to unity for 4= 1, 2, ... , n.
Obviously, this aim will be achieved if we assume

z=A-Wy. (4.151)

Referring to Eq. (4.149), we have

z = A'~Tr*? (4.152)

or
= TA ' z. (4.153)

If we introduce a notation

W = TA ' ,  (4.154)

ultimately we reach the extension

n

9 W z , (4.155)

in which the principal components zA and their weights Wi. are
determined by Eqs. (4.152) and (4.154), respectively.

Using Eqs. (4.150) and (4.154), we can easily show that

WW*= r and W*W

As was indicated, Spr = SpA . This means that the total dis-
persion of the variables 0i is equal to the total dispersion of

,the unnormed 1 components y4. Thus, we can find the fraction
introduced by each component or by a series of components to the
total dispersion. We denote with R2

J?= L=1r (4.156)
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Since for the correlation matrices Spr = n, where n is the
order of the correlation matrix, criterion (4.156) can be rewritten
as

P

-  (4 157)

Fig. 4.5 shows the variations in the criterion R2 as a func-
tion of p. Criterion (4.157) has the significance of the relatie
precision of expansion (4.130) then in it a specified number p of
terms is used. Using Fig. 4.5,j by specifying the precision of /146
the expansion, we can determine the number of the terms in series
(4.130) needed to achieve the specified precision. In Fig. 4.5
it follows that the optimal convergence is shown by the zonal
wind velocity component.

Using the eigen-
R'  elements of the correla-
1I0- tion functions of the

physical parameters of

a9 the atmosphere to deter-
mine the expansions for

V the normalized centered
8 functions 'k, by means

of Eq. (4.6) we can

0.7- t write out the corres-
pondipg extensions for

6P the particular physical
parameters of the atmo-
sphere we are consider-

a05 ing:

1 3 5 7 9 11 13 15n

Fig.,.4.5. Dependence of criterion R 2 on
cMe number of terms in the expansion

(t, H)= m,(H)+z(H) z, (t)ur(H) (p<n). (4.158)
130=

130



It must be noted that expansion (4.158) essentially is canoni-
cal. Actually, functions Ur(H) are nonrandom and can be treated
as coordinate functions, and the principal components zr(t) can be
treated as uncorrelated random variables with zero mathematical
expectation. The lack of correlation of the principal components
and the zero equality of their mathematical expectation is deter-
mined by Eq. (4.152).

4.6. Discrete-continuous Representation of Random Processes Within /147
the Frame of Reference of Correlation Theory

The above-examined canonicial and noncanonical expansions of
random processes are essentially representations in the class of
continuous coordinate functions and continuous random variables
with specified distribution laws.

Within the frame of reference of correlation theory, we can
obtain expansions of random functions in the class of continuous
coordinate functions and random variables of the discrete type with
specified distribution. Let us show this by introducing the se-
quence of independent random variables of the discrete type

A, 2,...Amj (4.159)

each element A i of which in)the realizations can take on the speci-
fied number of preassigned states Xi (j = 1, 2, ..., n) with the
probability P'I-I.s Here let us assume that the following system
of identities- s satisfied

n

P(i=1, 2,...m). (4.160)j=1

o

Representing the centered random process (t) in the form of
the canonical expansion

and using the conditions

M [A] =0 (i = 1, 2,..., m), (4.161)

M [AiAjl =0 (i j= 1, 2,..., m),

j=1

we can in accordance with Eq. (4.71) write out the identities
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m

R (t, t')y= Dx, (t) , (t'),
v=

m

D (t, t) = D, [x (t] .
v=l

Using the methods presented in Section 4.3, we can find the
coordinate functions xv(t) and the dispersions of random variables
DV (V= 1, 2, ... , m).

If above the process of constructing the canonical expansions /148
is terminated at this point, then under the discrete continuous
representation of the random process is necessary to set up, based
on specified dispersions of the random variables of the discrete
type Dv, to construct their distribution series. To solve this
problem, let us use Eqs. (4.161) and (4.162). Note that the prob-
lem of constructing the distribution series has a set of solutions.
Let us consider a series of its solutions.

To satisfy condition (1.61), the number of states of random
variable A must be greater than or equal to two. Suppose the random
variable has two states A and A2 with probabilities P1 and P
Then Eqs. (4.161) and (4.12) and condition (4.160) enables us
write out the system of equations

M [A] = , P + X.P, = 0;
M [A'] = 2Pj + P2 = D;P[A P=

2 D; 
(4.163)

One equation is lacking for the solution of system (4.163),
therefore let us'assume that Pl P2. Then we will have

P, = P = ;

x= I==Ix2I= V.(4.164)

Thus, using Eq. (4.164), let us present in Table 4.21 the
moduli of the random variables of the discrete type for the canonical
expansion of atmospheric perturbations whose characteristics are
given in Tables 4.8 - 4.11 (cold half-year, middle latitudes).
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TABLE 4.21. MODULI OF THE STATES OF
DISCRETE-TYPE RANDOM VARIABLES

Zonal
ScmPgntn !Air tem- Air

Meridional component o i perature density
of wind velocity velocity __

1,(0) '1,000 1.000 1,000
0.695 0.650 0,73 0,936
0,674 0,644 0,916 0.996
0,942 0,856 0,777 0,581
0,96 0,912 0,858 0.87
0,834 0,615 0.945 0.91
0,709 0.576 0,71 0,851
0.726 0,532 0,756 0.826
0,725 0,435 0,829 0,841
0,602 0,330 0.842 0.770
0,664 0,338 0,79 0.716
0,556 0,375 ,(,856 0.717

- - 0,857 0.634
0.832 0.646

It is inconvenient to use the data listed in Table 4.21, /149
therefore we can replace ,them with quantities that are equal to
zero for all the random factors, by multiplying in advance all
the coordinate functions by the magnitude of the state listed in
this table.

Now all the absolute values of the states of the random variables
of the sequence (4.159)/ will be equal to unity, and the states has
such will be determined by the values A 1 = 1 and A2 = -1.

The number of possible states of the random sequencS (4.159)
here is 2 m, where m is the number of discrete random variables,
and the probability of each state will be determined here by the
quantity 2-m, since each state is equiprobable.

We can similarly perform calculations when the number of states
is greater than 2. Thus, when n = 3 we will have the system of
equations:

M [A] = I,P, + 2P + )sPs = 0;
Al [a] = XP+ +2P2 + iP = 0;

PI + Psl + P3 - 1. = (4.165 )

Obviously, in this case
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P, P, = P3

(4.166)
•= = = l--,.5D.

When D = , we get =/-1.;-1.22, -22.5m -1.2 The number
of states when n = 3 is considerably increased and is equal to 3 m,
and the probability of each of them is reduced and is equal to 3-m.

When n = 4, we can easily obtain the followibg equations:

Al [A =- KP - ,+ KP P 3 + P, = 0;

.M [A'J = 2 P + .P, -- .P + ) P4 = D

P, + P' + PS + p., = 1, (4.167)

whence it follows that

.2 D
" 2P

The system (4.167) does not enable us to determine all the
discrete states uniquely. Let A2 = -0.5. Then when D = 1, we get

., = - / 1,75 --. 1,32.

That is, X1 = -1.32, k2 = -0.5, A3 = 0.5, and A4 = 1.32.

In these transformations all the discrete states are equiprob- 1
able, since PI =/ P2 = P3 = P4.

We can set up the';problem of determining the discrete states
and/their probabilities from the condition of satisfying the moments
ligher than.the second order, for example, normal distribution.
Here we will/have for n = 2:

M [A + '] = 2 I k+l p + P, = 0 (k = 0, 1, 2,...);

M [2 = XP + ),iP 2 = D.
Hence follows the solution obtained by:

1 -- '" = D; P, = P' = T

For n = 3, we have the followig systen of equations:
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M [A2_ Sk] = 0; k = 0, 1, 2,..;

M [Al'] = P + +P2 ),P 3 = D = 2;

M [A j = 4P + XIP 2 3 = 35";
P2 +P 1,

whence it follows that
S 0, X1  = - ),; P = P3;

2dP = 2;

2P,1 = 3z4;
2P! P = 1

Po = P, = ; P, = -;

When n>3, we can easily perform similar transformations.
The results of calculations up to n = 5 are given in Tables 4.22 -
4.24.

TABLE 4.22. DISCRET STATES

Number of 2 .3 4 5
states

T E.. B LE STATES

1 1
2 2

3 0 3 0
5 -- 2 V2 39 2 39 + 2 /- 5 - 2 I,2

88 88 88 8875 -/i0 7 0 2-/1i 8 7 +2" 7-2
60 60 15 OF STATES /15160

2~
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TABLE 4.24. MOMENTS OF THE k-th
ORDER

Moment Normal Nimhr_ of states-
2 3 4 5number distr. I _ _ _

1 0 0 0 0 0
2 2 a

2 
a2 12 72

3 0 0 0 0 0
4 33 Oat 33a4 j3 31

5 0 0 0 0 0
6 159 9 99 159* 159
7 0 0 0 0 0

Table 4.22 contains the numerical values of discrete states
of the random discrete variable as a function of the number of
states. Table 4.23 gives the probabilities of the discrete/states,
and Table 4.24 gives the numerical values of the moments for the
discrete random variable and the continuous random variable with
normal distribution.

When the number of states n and Di = 1 (i = 1, 2, ..., m),
the probability of each state of sequence (4.159) will be equal
to n -m, and the number of all states -- N =Kfnm. When there are
sufficiently large m and n, the number of all states N of sequence
(4.159) will be sufficiently large, which represents serious dif-
ficulties in investigating the scatter of the motion of flight
vehicles in the earth's atmosphere. Therefore we have the necessity
of examining the possibility of obtaining a discrete-continuous 152
noncanonical representation of atmospheric perturbations in the
form

S (t)= icos _t+ :\A.sin2* t

where A I and A are random variables of the discrete type with
the characteris ics:

M 1- I = M ] = 0;

M [_.kI-kI] = 0;

Y is a random variable.

Considering the results obtained in Section 4.2, to determine
the characteristics of the random variable Q* we will have thej
identity

r()6= M[cos9*t]. (4.168)
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If Q*=A,/ that is, a random variable of the discrete type
with the number of levels equal to n, Eq. (4.168) becomes

n

r (t)= cosktP. (4.169)
'=1

Since Pi > 0 and P, = , the problem of determining the quan-

tities of the states X i and their probabilities by using the ekpres-
sion is considerably more difficult. Therefore it appears possible
to use the followig procedure. Let the distribution of the random
frequency Q* be found from the condition (4.168), then by replacing
the continuous random variable with the discrete random variable
with a finite number of discrete states and with certain probabi-
lities of these states, as was j done above for the normal dis-
tribution of a random variable, we can satisfy Eq. (4.169) with a
specified error.

The representations of atmospheric perturbations considered
in Sections 4.2 - 4.6 essentially are the mathematical models
constructed on the basis of the same statistical characteristics
of the atmospheric parameters we have considered. In addition to
the different rate of convergence, the difference between them is
that if the canonical expressions (4.68) and the expressions in the
principal components (4.158) can be constructed for any of the set
of the profile of the physical atmospheric parameter considered,
then the profiles of physical atmospheric parameters modelled by
using the spectral expansions (canonical and noncanonical) are
selected randomly by means of the realizations of the above-indi-
cated random numbers.

The selection of a particular model for solving problems of
controlling the motion of flight vehicles in the dense atmospheric
layers must be determined by the nature of the problem formulated.
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CHAPTER FIVE /153

STATISTICAL METHODS OF INVESTIGATING THE MOTION OF
FLIGHT VEHICLES IN DENSE ATMOSPHERIC LAYERS

5.1. Models of Nonlinear Control Processes

When designing automatic control systems of flight vehicles
moving in the earth's atmosphere, it becomes necessary to take
into consideration the effect of fluctuations in atmospheric para-
meters on the scatter of trajectories. Allowing for fluctuations
in the thermodynamic parameters of the atmosphere (density Ap,
wind w, temperature At, and pressure Ap), which are random
functions, in the problems of the control of flight vehicles in
the earth's atmosphere can be based on methods of statistical
analysis and the synthesis of dynamic stochastic systems developed
on the basis of the general theory of random functions /2, 5, 16,
17, 25, 26, 27, 38, 48/.

By flight vehicle control we mean the control of the motion
of its mass center and motion about the mass center.

Both the motion of the mass center of flight vehicles as
well as the motion about the mass center are'described by non-
linear differential equations of the form

F(X, (5.1)

where X is the n-dimensional vector of the phase coordinates of
the flight vehicles in the coordinate system selected; t is the
instantaneous time; .is the ldimensional vector of the per-
turbing actions, including functions characterizing the fluctuations
in the thermodynamic parameters of the atmosphere; Xo is the n-

dimensional vector of the initial conditions of phase coordinates;
and U is the r-dimensional vector of forces or moments controlling
flight vehicle motion.
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Depending on the type of the flight vehicle, its function,
and its design and aerodynamic characteristics, one of the models
given in the studies /13, 79/ can be taken as the system of
equations (5.1)1 In the introduction, equations (1) - (4) describe
the motion of the mass center of a flight vehicle in the earth's
atmosphere.

Selection of a coordinate system in the form of mathematical
model of the process of the control of flight vehicle motion
usually is dictated by the goal of direct investigations. There- /154
fore, primary attention must be concentrated on setting forth
the statistical methods of investigating processes described by
nonlinear stochastic equations of the form (5.1).

Using the material from Chapter Four, we can examine five
forms in which the fluctuations of thermodynamic parameters of
the atmosphere obtained within the framework of correlation theory
can be represented /2, 60, 79/:

1) random functions;,

2) canonical representations of random functions with
continuous random elements;

3) noncanonical representations of random functions with
continuous random elements;

4) canonical and noncanonical representations of random
functions with discrete-continuous elements; and

5) representation of random functions by transformation of
white noise uting shaping filters.

Here the canonical representations of fluctuations in thermo-
dynamic parameters of the atmosphere can be:

expansions of random functions by elements obtained from
using the orthogonalization process (after Pugachev);

spectral expansions of random functions; and

expansions of random functions in eigenfunctons (method of
component analysis), and so on.

Depending on the kind of random function model used, different
models of the control process (5.1) can be constructed. Of interest
are the following models of control processes differing by methods
of statistical analysis:

139



1. The general model of a stochastic process described by
the vector nonlinear differential equation (5.1)lin whic!h fluc-
tuations in atmospheric parameters are random functions with
assigned statistical characteristics AM[(t)1,M[()*(t)]\ , and
so on.

2. The model of a stochastic process using representations
of random functions in the form of canonical or noncanonical
expansions with continuous random variables and described by the
vector nonlinear differential equation

A,= F (i, 1", u, X), (/) (5.2)

where V is the m-dimensional vector of noncorrelated continuous
random variables with an assigned law of distribution of probability
density.

3. A model of a stochastic process using representations of
random functions in the form of canonical or noncanonical expansions
with uncorrelated discrete frandom variables and described by the
vector nonlinear differential equation

SF(X, t, U, A), X(,)= (5.3)

where A is the m-dimensional vector of discrete]random variables /155
with assigned distribution of discretestate probabilities.

4. A model of a stochastic process using the differential
model of the "white"noise" filter @(t) and described by the non-
linear differential equation

X = F(X, t, b(t), U), X(t,) = XO (5.4)

where O(t:) is the s-dimensional "white noise" vector with a
zero-valued mathematical expectation M[l(t)]=0] and a specified
correlation function of the form

Above the following notation was used: S(t) is the matrix
of the spectral density of "white noise" and 6(t - T) is the
delta-function.

In model (5.4), vector X includes also phase coordinates
of the "white noise" filter.

For each of the mathematical models (5.1) - (5.4), we must
examine the possible directions of the statistical analysis of
control processes for an assigned vector of controls U defining
the control process.

140



One of the possible approaches to analyzing nonlinear sto-
chastic processes is the method of complete linearization of
nonlinear equations of the form (5.1) if linearization is possible.
The idea of linearization is based on the assumed, and usually
attainable smallness of the deviations from the reference process
realized by introducing control with respect to the deviations.

Essentially, the method of complete linearization is as
follows. We can represent the solutions to differential equation
(5.1) in the form

X(t) =X(t +AX(t), (5.5)

where X is the vector of the reference solutions of nonlinear
equations (5.'1) obtained by integrating the latter for zero per-
turbing actions ,(t) and assigned initial conditions X( 0o) -0o
AX(t) is the vector of deviations of the solutions of the
perturbed system (5.1) from the reference solutions caused by
the presence in the right side of the equations (5.1) of pertur-
bations ((t).

By carrying out the complete linearization of equations (5.1),
we can obtain a linear model of the process of the form

AXA= A(t)AX +C(t) (), jX(t,,) = X, (5.6)

where A(t) = F

is a matrix of order (n, n) computed for the reference solutions
X(t) and characterizing the properties of the process;

C(f) )=

is a matrix of order (n, 1) computed for the reference solutions /156
X(t) and characterizing the degree to which the perturbing actions
affect the process under study.

Eq. (5.6) is a linear model of the nonlinear process (5.1)
for a specified control U(X, t). In the linear model (5.6), the
perturbation vector can be represented in any of the above-listed
methods of representing random functions.

Of interest is the linear model for the process (5.1) if the
control is organized so as to reduce the numerical values of the
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vector of deviations AX(t) from the zero value. In this case,
the control vector can be represented in the form

U(X, t)= U(t, AX). (5.7)

Then the linear model of process (5.1) has the following form:

A) = A (t) AX + B (t) U (AX, t) + C (t) (t),

AX (to) =AX, (5.8)
OF .

where B() =duy is a matrix of order (n, r) characterizing the
effectiveness of the control actions U.

Linear models (5.6) and (5.8) are set up on the assumption
that the vector of the reference controls 8 is equal to zero. If
the vector of the reference controls D is not equal to zero, but
the control can berrepresented as the two summands

U(AX, t)= U(t)+AU(t, AX), (59)

then the reference solution is usually obtained by solving the
nonlinear differential equations (5.1) for U = (t), and the
model of process (5.8) is of the form:

Ik = A(t)AX +B(t)AU+C(t)(t),
X. (to) = (Xo(5.10)

In practical applications, we are interested in the case of
control when the controlling function AU(t, AX)! is replaced by the
controlling function AU(t,. AX)\ , that is, the process of forming
the control by vector AX(t) takes place with respect to a certain
function

p= (X, U, , t), (5.11)

which is a function of phase coordinates, controls, perturbations,
and time.

This problem is examined in detail in /59/ for the case when
the function 4 depends on the phase coordinates of the process.
The use of measurements in the body-axes coordinate system leads
to the necessity of examining the control-processes in which the
argument of the control' action is determined, in addition, by
perturbations and control actions.

The requirement of monotonicity is imposed on the function /157

(X, U, , t). Realizing control with respect to the function 4
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means that the independent variable (time t) in differential
equation (5.1) must be replaced with another independent variable
(function A ). In this case the differential equation of process
(5.1) can be represented as

d F(X, , X(t) = Xo (5.12)

and the control process must be supplemented with a differential
equation for determining the instantaneous time of the process

t t(vo) (5.13)
d-- 4(X, t, U, )

Carrying out the complete linearization of equations (5.12)
and (5.13), we get the linear model of the process in the following
form:

d~~X (,) AX + P() AU+ Q () +h()At, (5.14)
d:x(5.1)

AX(.o) = AXo,
dAt
--t = ( ) AX + , (0) AU + () 5 + (p) t, (5.15)

At (Fo) = Ato,

),where)
D,)= ( F

-(t,) = 1 a a ) d )' (5.16)

are the matrices of the linearization coefficients calculated
for the reference solutions of equations (5.1), when X(0,) .

It should be noted that U(t)l-P(i) , since the unperturbed
motion described by system (5.1) when ((t)~ changes identically
both with respect to time as well as in coordinates A .

The function A is called the parameter of the control process
/59/, equations (5.12) and (5.13) are called nonlinear parametric
equations, and equations (5.14) and (5.15) are called linear
models of the nonlinear parametric equations.
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Introducing the matrices /158

=(D h S (P), L Q

and the vector of order (n + 1)
Y (AX, At),

- -J

we can represent the system of equations (5.14) and (5.15) in
vector form

d ) (~) Y + S (p) AU + L (1) .(),d:=

Y (to)= YO.
(5.17)

Matrices (5.16) can be computed based on the above-presented
formulas, by first writing out equations (5.12) and (5.13) in
particular cases of parameter A. However, the linearization
process is a quite cumbersome procedure, therefore we must consider
the algorithm of searching for a relationship between matrices
D, pQ,., a and 6' and the matrices of the linearization
coefficients A, B, and C. To do this, let us determine the partial
derivatives of (5.16). Obviously,

F 1 OF * 0D= Ty(i- 6[OF cp F ax

P - P 1 OF - O

Q= (-)=-, OX'

F 1 OF F ]

T= t2 OF
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Since A= F and Cd- r ___SA B and C' = , equations (5.18) /159

will become:

D = [ A F ,

P= B -F ,Y

Q= .IC- F

Y 2 1 
Y 2 dX T U 'Sox' U

(5.19)

Expressions (5.19) can be transformed if we use the total
derivative of the function ) in the form

Y X+- + F

U- US (5.20)

where U is the derivative of the reference control action r; $
is the derivative of the vector of the atmospheric perturbing
actions which were taken into account in computing the reference
motion (t).

Denoting [i(t)=g(t), (t)==q(t) we can represent expresseion (5.20)
in the form

F-- - q t (5.21)

To determine the matrices D, P, Q, n, , 1 , and 6, we
must compute in the general form the partial derivatives O -

,' . This can easily be done if we use the following rules

for obtaining partial derivatives of complex functions:

the derivative of scalar H with respect to a vector is the
vector-row
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the derivative of a scalar product with respect to a vector /160
is the vector-row

d. d. .d dn
d(a, b) d (ab) = ab dx dX '

a and b are columns, (da/dX and db/dX are matrices); and

the second derivative of a scalar with respect to a vector
is the matrix

- d 2a d 2a d 2a

d 2 dxldX 2  '' dxdx,

d 2a d 2a d 2a d2a

dX ddx 2 dX2 d ". dx dxn
2 .. . . . . .

d2 a d2 a d 2a

dxldxn dx2 dx n  dx2

Following these rules, we will have:

O = F, + L" OF+ g* 02 ,+

as axg -, a , dq uaX
+ A--T - z O +O a -Oqa2

u+ OX q * O +a Ox q atax

dF dy OF 02r O dg q, - O q .01(

= u+ *~ + -q*ouou +  + 0? -t _-

Ot - ox+t oF x + gUt dU at d +  at + te,W_ 0F O +F O - O? Og 0! OU Oq
--- =O OF 092 - O ot + y aq +  o - - "

These expressions were obtained by determining the partial
derivatives with respect to vectors X, U, E , and time t from
the first part of expression (5.20). They become considerably
simplified if we consider that

Og - - Og - - - 0,

and introduce the notation

Og Oq OF
- - = -g'; L = ,5
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We get /161
- = + A + g * 02 + q* .' +

= F* & + B + g* o q,0X o OO 22+ q* "' +

-- - O --- 2? 0--p 0
F* - + C + g* q +

°-zY F+ +±.

SO q(5.22)

Substituting expressions (5.21) and (5.22) into equations
(5.19), we get working formulas for computing the linearization
coefficients of the nonlinear parametric equations (5.12) add
(5.13), by employing matrices A(t), B(f), and C(t) of the linear
model (5.10), and the partial derivatives of the function k with
respect to vectors X, U, , and time t computed for the reference
solution X(t)..

This algorithm enables us, when model (5.10) is available, to
construct quite easily the linear model (5.17) for any function t

and given the presence of the reference solution X(t).

Let us examine several particular cases. If we consider
t=p(X, U,t) , formulas (5.22) become

T =F. A + g* "o x ;

= - + + g" +

a = C;

= F+ P (5.2)
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Finally, when p=q(X) we get /162

o" F) +d A;

-- -1 - c B;

-7- , ; TXc (5.25)

For example, substituting expressions (5.24) into equations
(5.19) with F+ Ifor the parameter i=p(X, t , we get the

following workIringformulas:

DA t t O A2+ 0 ax atot

1 ~B FFB -- F- -R ]P== AFA F F - F B
- +a2 OX at ax

Q= OXt

(( ++

o 1 F( + F - f F-F P -Fd;

I F Oxp 02B;

S= - 2 O C;( F +  )

x at (5.26)
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Relations (5.26) graphically show the simplicity of trans- /163
formations from the linear model (5.10) to the linear model (5.17)
when implementing controls with respect to some parameter A , which
is a function of phase coordinates and time. Similar relations can
be written out also for the other forms of function A . Naturally,
the simplest relations (5.22) are obtained for a parameter of the
form (=r(FX) , since here

D A F A -FA FF* 2;

P B F-F B

= (O)2X

O x F)d

1 1 .

Q= O) OX F

(5.27)

To prepare for the statistical analysis of models (5.10) and
(5.17), we must determine the structure of the control actions.

To do this, let us introduce into consideration a certain
system of observational i functions

1k9
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each of which is computed for the reference solution X(t) and is /164
equal to

",, ,, .. , . (5.29)

Using the systems of functions (5.28) and (5.29), let us
compute the differences

A,,1  -1 A7 - = - ,. ,- (5.30)

and let us assume that the control AU is a function

AU(A-1,, aL,, . ,k). (5.31)

Linearizing expressions (5.31), we get

AU= OGA', (5.32)

where G= dU is the matrix of order (r, k) characterizing the

linear part of the control action.

For the vector A77 , we can also obtain the linear representation
in the form

An=HY +NAU + M, (5.33)

where H= j; N= ; /A4= _are linearization matrices of orders

(k, (n + 1)), (k, r), and (k, 1), respectively.

From expressions (5-32) and (5.33) we can obtain an expression
for the control action in the form

AU= (E+GN)-' IO.Y+GMI]. (5.34)

Substituting Eq. (5.34) into Eq. (5.17), we will have

_.= Y() Y + ( ) (1), (5.35)

where

A ( P) = E + S (E - GN)-'GH,

() L =L+S(E-GN)-'GM. (5.36)

Thus, the above-considered four nonlinear mathematical models
of the control process (5.1) - (5.4) can be supplemented with the
linear model (5.35), whose elements in-the-general case-are described
by relations (5.36).
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Example 5.1. Let us illustrate the foregoing with an illus- /165
trative example for a simplified model of the motion of the center
of mass of a flight vehicle in the earth's atmosphere, whose
equations are presented in /13, 797. Without considering the
earth's rotation, the simplified model of motion of the flight
vehicle mass center in the longitudinal plane Oxy (Fig. 5.1) is
of the form:

V = - 0 cos (0 a) -a) sin (0 + a) - " g;
V)r (5.1.1)

r
x = Vy,

y = - Q1 sin (f + c) + }t cos (( j a)- g

V, (to)= v ,O;  Vy, (to)= Vy,O;
x (to)= xo; y (to)= o, (5.1.2)

where the following notation is used:

V
r=R+h; M=-;

Vy
0 = arctg - g = 9,81 = const;

2R V= x V

Vx = V cos 6; Vy = V sin 0;

= o(, M), (h) V=- 1  (2, M)p (h) V2 ;

C, (a, M) S
o0(a M)= 2m

C (0, M) S
.M( ) 2,, (5.1.3)

a is the speed of sound; p(h) is the density of air; h /166
is the flight altitude of the flight vehicle over the earth's
surface; VW is the airspeed of the flight vehicle; and R is the

radius of the earth.

The functions vo(&, M~) and y(a,-,M) are determined by designs
and aerodynamic characteristics of the flight vehicle.

The angle of attack of the flight vehicle is taken as the
control action. Let us consider the following by way of pertur-
bations:

deviation of atmospheric density p(h) from the standard
atmospheric parameters
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Yk-

1 1

Fig. 5.1. Coordinate System

deviation of the function Y from the calculated0 0

iTo= o - To

deviation of the function 1 from the calculated 1

The &ffect of wind perturbations is not taken into account
below for methodological considerations, therefore V = V.

Let the reference control (t)=a(t) be specified from considera-
tions of the movement of flight vehicle from a point with coor-
dinates (x , yo) to a point with coordinates (xh, yh ) and let the

reference solution of equations (5.1.1) be obtained given the
initial conditions (5.1.2). Linearizing ,te equations of motion
(5.1.1) relative to the reference motions Vx (t), x(t), Vy (t), y(t),

we get the linear model of the process in the form

AVx = aAV + ax + a + a12 yx + a 3AVy + a14A + CJ1ap + C12ATo + c1jsa1l;

A. = AV,;

AV'y = aAV, -a32 Ax + a8,AVy + a34Ay + baAa + c31 Ap + c 2ATp + ca A-o+ c Ja(T1;
Ay=AV. (5.1.4)
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Introducing the notation

Ax = (AVx, Ax, AVy, Ay); AU= a;

S*( P, A , ATo,);

Sall a12  ala at, b ,

1 0 0 0
a31  a32 a33  a31  b3

0 00 0

C11 C12  C13

C= 0 0 0
C31  C32  C33

0 0 0

we can represent Eq. (5.1.4) in ve tor form

i = AAX + BAU+ C (5.1.5)

Let us define the control action A U in the form

AU - k1AV, + k.Ax + k V y k, A !y,

or in the vector form /167

AU = K* , (5.1.6)

where

K* = (k, k2 k3 k).

Substituting Eq. (5.1.6) into Eq. (5.1.5), we get

AX=(A + BK*) AX+C. (5.1.7

The process of setting up a linear model for the control of the
motion of the flight vehicle ma~s center can conclude at this
point.

Example 5.2. Using the results obtained in example 5.1, let
us construct a linear parametric model if the parameter is assigned
in the form

I= vox (vo = const). (5.2.1)

Using Eqs. (5.27), let us find the relations for calculating the
parameters of matrices D, P, Q, h, B, y , and 6 of model (5.14)
and (5.15). Since

SXZ - (0 'o 0 0);OX--

J -o 0 0;- wF

F* = xi yy/,
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then the linear model (5.14) and (5.15) can be constructed based
on the formulas:

O y _ F -----oX

1 [A F- F Of A] *

(X OX

Qj [C [cF-F C ]

0 dv &X '

I _ _ " . 1 Oa = A = B; 7=- -- C h =- i0.

vs vx 'oX) (5.2.2)

Considering that

0 vo -X 0 0

dX
0 0 V 0 0

using expressions (5.2.2) we get-- /168

vO.x 2  vOX 'ioX vX

0 000

D = a 3 x-Vy a32  a3 3 a,4

00 vox vO, vex

y 0 0

P* = 0 0 b 3

VoX O OX

C-1  C 12  C 1 3

vox vox vXo.

000

c,, cs, c, (5. 2.3)

/ontinued on following page7 X Voxvox vox
00 0
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( -0 0 00vo (5.2.3)

= - = o. ( Cont. )

Eqs. (5.2.3) show the considerable simplicity in setting up
a linear model of the process (5.14) and (5.15) by using relations
(5.27). Summing up the foregoing, let us write out the matrices
S, S, and L, for the linear model of a parametric system:

d d 12 di d 14 d0 O

= d d 8a d 8 ds4  0

d4 1  0 d43 0 0
a 0 0 0 0

S=(p 0 0 0);
q11  q 12  41 3

0 0 0L qs, q82 q8 .

0 0 0
(5.2.4)

Introducing the notation /169

Y* = (AVx Ax AVy Ay At),

we can write out the equation of the linear model (5.14) and (5.15)
in the form

Y'= Y +SAU+L. (5.2 5)

Substituting the control A U

AU= kAv' + k2Ax + k3iAVy + kiy + kU (5.2.6)

or U = K*Y, where K* = (k1 k2 k3 k4 k5 ), in Eq. (5.2.5) we get

Y =(+ SK*)Y+L. / (5.2.7)

Thus, the procedure of constructing a linear model for the
control process assuming parameter (5.2.1) is completed. We note
that in Eq. (5.2.6) the coefficient k2 = 0, since the differential

equation for the coordinateA x in Eq. (5.2.7) is absent (all
linearization coefficients in the second row are identically equal
to zero).
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a,, (t

1000 -

Fig. 5.2. Linearization Fig. 5.3. Linearization
coefficients all(t) and coefficients il(t) and

Figs. 5.2-5.4 show the variation in several coefficients
aij and dij , bi, and Pi as functions of arguments t and 1 .

These results characterize the variation in the dynamic charac-
teristics of the control object in passing from one control
argument t to the other argument 1ox.

Constructing the linear model for nonlinear parametric systems
with the more complex dependence of parameter 1 on phase states
Vx, x, Vy, and y also does not occasion serious difficulties.

At this point, the examination of models of control processes /170
can be concluded and we can proceed to considering methods of the
statistical analysis of processes for controlling the motion of
a flight vehicle in dense atmospheric layers. By the problem of
the statistical analysttical analysis of control processes we will mean the
problem of calculating the mathematical expectations of solutions
of Eqs. (5.1) - (5.4), (5.35), and correlation matrices of the
solutions

xx (t) = M X (t) X* (
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or the statistical characteristics (mathematical expectations and
correlation matrices) of several functions of the solutions to the
nonlinear stochastic equations.

a, ant 5.2. Statistical Analysis of Non-
linear Systems Based on a Linear
Approximation

0.002 -.0o.10 -

Let us write out the solution
to Eq. (5.35) for the linear model
of a control process in the Cauchy
form

40 + - (5537)

0o to 0 0OV We assumetthat the matrix of
the initial-condition correlations

Fig. 5.4. Linearization
Coefficients a1 2 (t) and ) = = M

Ryr,(p)= Ro = M (YoY] )(5.38)

arid the correlation matrix of the
perturbing actions -- fluctuations of the atmospheric parameters

R (t,) = M () * ()]. (5.39)

are given.

Let us find the correlation matrix of the solution \ /171

R .(i, ) = M I Y() Y ()],

by using the solution of equation (5.35) in the form (5.37).
Assuming that the statistical interrelationship between the
initial-condition vector Y and the perturbation vector E() is
absent, we will have

x C () ( t, ,) C (-) [I-'(,c)] * (,,) dt dc. (5.40o)
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In Eqs. (5.37) and (5.40), the matrix (t) is la fundamental
matrix of the solutions of the differential equation (5.35)

, ( )(5.41)

Computing the correlation matrix vryv(:,0 by employing
expression (5.40) involves several difficulties, namely: prelimi-
nary integration of equation (5.41), necessary computations under
the sign of the integrals in Eq. (5.40), and computation of the
double integral of the function of two variables. The computational
difficulties are considerably diminished if we use different repre-
sentations of the random function.

Let us examine several particular cases. For the canonical
representations of atmospheric perturbations taken in the form

- (t) = 0 (t) V, (5.42)

where ( (t) is the coordinate-function matrix and V is the m-
dimensional vector of random variables with normal distribution
of probability density and with the assigned characteristics

.4JVI=O; M IVV,]I = ,

Eq. (5.40) can be transformed to become

R ., (:) = I ( l ) R0 ) * (0) + o (J) ( - I (f t) (t)O E M ,V

X 3: (-) * (* ) [-' (e)** ( (:) d td. (5.43)

In appearance, Eq. (5.43) is not simpler compared with the earlier- /172
derived solution (5.40). However, after uncomplicated trans-
formations, which yield the expression

:,0 (5.44)

its simplicity becomes evident.

Introducing the notation

S( (t) dt,
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we get for (5.44) the following representation:

R,,() = 'D (!Oe( *)+H(,)Rvv H (). (5.45)

Eq. (5.45) can be used in computing the matrix RAy(, 10
both with the continuous vector V as well as with its discrete
representation. - I

If the vector (Ct) is "white noise," theh by substituting into
Eq. (5.40) -the correlation.function of-perturbation in the
form (5.46)

R (t, ) S (i)a(t - ),
we can get

R,, 0,) = 1 (±)R I? (* 40 + D S c '(t) 1 (t) X

) (t,) RoI (V ) 5 D -( 1L4 (+1() (t)S (t) * (t) dt.
, o (5.47)

Noncanonical representations of random functions do not
simplify the calculation scheme (5.40) for computing the required
characteristics.

Using relations (5.40), (5.45), and (5.47) involves quite a
cumbersome computational process, since we need to integrate
twice: first, to compute the fundamental matrix of solutions

) , and second to determine the component of vector Y caused
by the action of atmospheric perturbations. Therefore, in actual
statistical analysis of linear systems use is made of correlation
equations relating the matrix Ryr(I, tp)) with the matrices R and

Denoting /173

(1-0

let us write Eq. (5.35) in the form

I- AY, ) Y+(Y) (5.48)

We can easily show that for any random vector-functionqij()
that exhibits all the derivatives V k), the following correlation
system of differential equations corresponding to Eq..(5.48) is
valid:
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R-y = AR4y + RvY A* + Ry + y

R.= 7R, = + R,,. , + R,.,

R',, = AR,, + R,, + R ,

R',. = R,. + R, " + R, y+

R,(ak) = AtR ,(k) + R,,.(k) + R y, ak + 1),

with the initial conditions

Ry (o)= Ro; (5.49)

RY(Po)= R4/(Fo)= ... Ry() (o) = 0. (5.50)

The system of equations (5.49) associates correlation matrices
of the output characteristics of process Y with the correlation
matrices of perturbations RPR,, ... R4( and the matrix of the

system A under investigation. In the general case, it is virtually
impossible to use system (5.49) in view of its infinitude. If it
turns out that the solution Py,(k+I)J is identically equal to zero,

then the system of equations (5.49) will be a finite system of
correlational differential equations. This system of equations
can be used in the statistical analysis of a process based on the
linear approximation, that is, based on linear model (5.35).

Note that in deriving system (5.49) use was made of the
following transformations:

RY',.= d (YY*)] = M I Y'Y*+ YY*'] =

= Mf(AY + ,) Y*+ Y (AY + f)*]

= AiR,,. + R ).A* + R>.., + R)-,,

R), = M [Y}] = A IY'* + Y *'J =

= M I(AY + + IY 'j = R, + R4, +R,

and so on. /174

Let us examine the possibility of obtaining an estimate of
the term Rp ,( + I. To do this, we obtain a system of differential

equations (5.49) by using the solution to Eq. (5.48) in the form
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(5.40), after first representing it in the form

,(t, i) = ,I, (4 ) Ro* (p) + f $ ( )r,-' () x

x RO, (t, c) [I-' ()] * () dt dc
or in the form (_)]*

Rr ) = () "() * ( , (5.51)

where

7 (P)= R, + S '()R (t?) o i~)l* dt d. (5.52)

Differentiating Eq. (5.51), we get

R k= 6'(p) (P) *() ± (G)T(O) (L) +Dp)

Since

' = A, (.')* = *A*,

we will have

R;.y (P) ARYY R,,A* + .(,)() (r (5.53)

Introducing the notation

= , (') [ -'p o)]*d),,

let us represent Eq. (5.52) in the following form:

r () Ro R+ f -' ( ) 9 ( ; ) d-
11o

and let us differentiate it in the independent variable

- 'r-j =(',,,- + (r

Since /175

O(t, L) - - (, '
L)[161
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the expression for the derivative :of function Y(I) is of the form:

+ - ' (I) ' (ri, ,) ['-' (A)l* d,.

Substituting this equality into Eq. (5.53), we will have the
following integro-differential equation:

+ (, ) = R A ()]* *r (7D ).

(5.54)

We introduce the notation

v(G) (D (5.55)

Given the condition that

GO. d-, V . ,

Eq. (5.54) takes on the following form:

R' = 4R + + R ( ) -+ -V( * (+v.). (5.56)

The quantity y(j) is a matrix of order (n, n).

Differentiating Eq. (5.55) with respect to parameter of j ,
we will have

' ()= A () + R. ( ) + 1v (,),

where

S( ) = [b (r), ( -' () , ,, (--, i) t-. (5.57)

Continuing this process of transformations, we get an /176\
infinite system of equations characterizing the correlational
transformations:

162



R', = AR,, + RyYA* + v (ji) + v~ (I-);

V ' (+) = (I) (P) - ()+ V, ( );

v A (t) = A () V (t) + R ,, (I) + V3 (tL);

V; (P) G= () i () + R ,(k) + ; (5.58)

where

V () () 1(r ) A! d(()-1

By form, the systems of differential equations (5.49) and

(5.58) coincide, therefore we can write

, (k ) P) = *(k+ +) =  (t o - () M ( ,) ( )  dI (5.59)

Eq. (5.59) enables us to estimate the magnitude of matrix-R yk+'I)'l
if we use the data on the numerical characteristics of the
matrix

Let us now determine expressions for M_[9(_) (t)] . To do
this, let us find the derivative of the product

() * () ' () * () + ()'* ( (5.60)

We use the operation of mathematical expectation on the
equality (5.60), here considering that the operations of mathe-
matical expectationsand differentiation are permutatable. We get

Obviously,

(5.61)

Now let us determine the second derivative of the product /177

-_ ,d2 * = ,"~" + 2,', + "6
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After the averaging operation, we will have

R* = MI"*[ + M +"*S] 2M

Since

we get

R",= 2M [}"~*] + 2R,,.

hence it follows that

Rw= --TR,. (5.62)

Continuing th6se transformations, we can easily obtain

RYY. =- 1 (5.63)

On analogy, we can find expressions of the form (5.61) -
(5.63) also for R(l.

The statistical analysis of fluctuations in atmospheric
thermodynamic characteristics enabled us to make an estimate of
the variables R ,\ R,,, Ro,/ , and so on.

Itoturned out that

Therefore, for control processes in the atmosphere we can assume
that

Accordingly, a system of correlational equations (5.58) becomes
considerably simplified and takes on the form:

R;,, ( V) = A () RY, () + Ry, (p) A(r) + v () + * (i);

This is valid also for the system of equations (5.49). Therefore
we will have

R,,:() = (EL) (E)+ ( ,) (±) A*()+ R+ , (i) + R(

Ry'.(Io) = R; R (.,) = . (5.64)
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Therefore, we arrive at fairly simple differential equations which /178
are highly convenient for the statistical analysis of control
processes of flight vehicle motion in the atmosphere based on the
linear model (5.35).

In the particular case when the perturbation is "white noise"
with characteristic (5.46), from Eqs. (5.64) there follows the
familiar correlation equation

R', () = A' (~.) Ryy () + Ry() * () + S ( ).

The results of investigation the linear model (5.35) can be used
as the first approximation in investigating nonlinear stochastic
differential equations (5.1) of the control process.

Example 5.3. For the linear model (5.1.7) of the control
process (5.1.5), given the numerical values of the coefficients
of the control algorithm (5.1.6) equal to kI 

= -0.000418, k 2

=-0.000576, k3 = -0.000633, and kq = -0.000295, the numerical

integration of the correlation system of equations is carried out:

xx = A (t) Rxx + RxxA* (t) + Rxe + Rx,-

Rx4= A (t) + ReG*,
(5.3.1)

where

A M[V2 M[(Vxx] M[VyVx] M[Vx]

M [Vxxl M [x 2] M [xVy] M [xy]

xAx M[V [ V[V] M[ [V2 M [Vy']
M I Vy] M [xy] M lVyyl M [y2l

M [Vx 1 M [VX21 M x,,l

XE= M (v, , M IVyE,] M [VAl '
M [yAEl M [y1 M [y]31

R M = [,2 M V - M [ 3@,1

M Pf~1 Al2] M 2M 31

M P:1 31 M 11Y31 M RC-.I

S0 10 0 0
" = A -- BK*, Rx(O). 0 4O 0

0 0 I(~ )
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Figs. 5.5 - 5.7 give the graphs of the root mean-square /179
values of the coordinates x, y, V x, and V , control a , and

normalized values of the reciprocal moments

M IVx y1 M [VxVV1

M [Vxxl M [Vyy
.1"3

M [x yl M IVyx]
rY r :=

Analysis of the results of the numerical integration of the
correlation system of equations gives a fairly complete represen-
tation of the control process (5.1.7).

Thus, from Fig. 5.5 we
Sea , - can determine the time intervals

ay 7 .O m/sec -- when the phase coordinates of
UP the process have their greatest

scatter, andlalso we can esti-
mate at any instant of time

so6 within the framework of corre-
lation theory the possible

2000- scatter of phase coordinates
and of the control.

4- 400 Fig. 5.6 enables us to
establish a correlation between
the phase coordinates and shows

odo00 . that a near-functional relation-
.2- 200- ship exists between coordinates

x and y. The explanation of
this fact lies in the structure
of the control algorithm (5.1.6).

OL OL 0 Example 5.4. Similar
20 calculations were carried out

Fig. 5.5. Root mean square values for the linear parametric model
of the coordinates y, Vx, Vy, and (5.1.7) of the control process.

Figs.' 5.7 and 5.8 give thecontrol a for the time argument of
the program = t) graphs of the root mean square

values of the coordinates t, y,
Vx, Vy, control a/, and normalized

values of the reciprocal moment r when only the deviations of the
initial conditions AX are in effect.
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Fig. 5.6. Normalized values of reciprocal
moments for the time argument of the pro-

gram ( = t)

Figs. 5.9 and 5.10 present similar results for zero initial /183
conditions and when only external atmospheric perturbations are
in effect. Fig. 5.11 illustrates the results of the effect on
the control process of deviations from the initial conditions
and external perturbations.

A comparison of the. results of investigating linear models
under the time and parametric form of specifying the argument P
enables us to establish the considerable effect that the form of
the argument has on the scatter of phase coordinates of the control
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0.02 -400

200 L
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Fig. 5.7. Root mean square values of Fig. 5.8. Normalized values
the coordinates t, V , V , y, and con- of reciprocal moments given
1 x the parametric argument =trol a for the parametric argument 0.000298x caused by scatter
P= 0.000298x caused by scatter of teix a bsttof the initial conditions.

the initial conditions

process. Thus, when 1= t,-the root mean square value of the
coordinate y is y 3000 m, while when p= v x, this value is

U = 1000 m. Here, the maximum value of G is shifted with respect
Y y

to the argument to the beginning of the control process (when l1 =
=, v x) compared with the time argument. These illustrative

examples graphically show the effectiveness of the correlational
analysis of nonlinear systems based on the linear model.

5.3. Methods of Statistical Investigation of Nonlinear Processes

When examining methods of the statistical analysis of control
processes describedcby nonlinear stochastic differential equations,
a problem of considerable importance is the selection and validation
of the corresponding model of the process. Mathematical models of
the processes (5.1) and (5.4) are structurally quite close, since /184
in both mathematical models the right side of differential equations
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Fig. 5.9. Root mean square values
of the coordinates t, y, Vx, Vy , and

control a for the parametric argu- -.e
ment P= 0.000298x caused by the r

action of atmospheric perturbations -O4 20 30 40 .

Fig. 5.10. Normalized values

(5.1) and (5.4) is described by of the reciprocal moments for
a continuous random process E (t) the parametric argument, -
or i (t) with assigned statis- 0.000298x ;caused by the.
tical characteristics. Naturally, action of atmospheric pertur-
two approaches of investigating bations
processes described by models (5.1)
and (5.4) suggest themselves. The
first involves correlational transformations, as was done for
the linear model of process (5.35), and- cons-tructing a system of
correlational nonlinear differential equations linking correlation
matrices of solutions RXX(t,t), correlational matrices of pertur-

bations ,R(t, ) , and the matrix of initial-condition correlations
R . However, the solution of this problem in particular cases of

nonlinear processes involves infinite systems of differential
equations and the necessity of computing the moments of solutions

of high order .1[X(k)t)Xi , where k, p > 1 are positive (integers.

Correlational transformations of nonlinear systems is a quite com-
plicated process and essentially they do not find wide use in the
actual practice of investigating nonlinear stochastic processes of
the control of flight vehicle motion.
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ry The second approach
to the statistical inves-

soo tigation of processes
described by models (5.1)
and (5.4) is associated

2- 200- with approximate methods
600oo of computation based on

(Y the techniques of mathe-
matical statistics.

-o00 In beginning to expound
I- 0too- /on the problems involved in

applyinggthe apparatus of
200- mathematical statistics to

the statistical investigations
of nonlinear stochastic
processes, we introduce a

0- 20 30 40 50, set 2 z of elements, which we

will call sampling or random
Fig. 5.11. Root mean square values points. We will regard a
of the phase coordinates t, y, Vx, sampling point as the possible

and for the parametric outcome of an experiment
yand control conducted with a given set

argument = 0.000298x caused by of conditions (random pertur-
scatter of the initial conditions bations).. As applied to
and by the action of external per-, this particular problem of

turbations. analysis, by an experiment
we will mean the integration
of differential equations for

specified realizations of random perturbations 1 (t) or E (t) in the
mathematical models .(5.1) or (5.4). Let us assume that as a result
of conducting N experiments (integrations of Eqs. (5.1) employing
analog, digital, or hybrid computers) for realization of the random
perturbations

) E(2) ... , (1) (5.65)

we get a set oz of realizations of the solutions to equationsz
(5.1)

X"', X"~ 2 ... XN . (5.66)

Since the sequence of realizations of perturbations (5.65) is
a random sample, the sequence of solutions (5.66) is also a random
sample.

From the elements of sample (5.66) let us compose the sample

(2) () (5.67)

170



and let us examine several statistics of the sample: /185

the sample mean value

N

z .N (5.68)

the sample dispersion

S
2  

| N - 2

S -- N I (z- .  (5.69)

If the laws of the distribution of the elements of sample
(5.67) are identical, and the elements of sample as such are
independent random variables, then we know /31/ that

M [z = I; (5.70)

2 []= M [(z-)2= (5.71)

where az is the root mean square value of the random variable

z and pz is the mathematical expectation of this variable.

Similar formulas can be written out for the sampling dispersion:

M [s2 = 2; (5.72)

(N- 1) + 2 4M((') N N(N--I) z (5.73)
I =If ( N- 3 4

a N(s) = - N--3 (5.74)

Eqs. (5.70) and (5.72) mean that the sample mean z and the
sample dispersion s2 are unbiased estimates for the mathematical
expectation and the dispersions of random variable z with mathe-
mathical expectation z is the dispersion of :C2 and the fourth

central moment P 4. Dispersions of the sample mean z and the

sample dispersion can be computed by Eqs. (5.71) and (5.74).

Using Eqs. (5.68) and (5.69), we can compute the mean sample
values and the sample dispersion, and by formula

sj v--i w (X- X)(x- x (5.75)

also the elements of the sample covariancelmatrix of solutions to
nonlinear differential equations (5.1) represented in the sample
(5.66).
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In estimating the characteristics of scatter the mean sample
value and the sample dispersion obtained by Eqs. (5.71) and (5.74),
difficulties arise, since the characteristics of the random variable -
z,namely a and are not known. If the random variable z has a /186

normal distribution, then Eqs. (5.71) - (5;74) are of the form:

Ss N- i (5.76)
-- L l

If we use the sample value of the dispersion s2 instead of

02, then from Eqs. (5.76) there follow the formulas

2 P S 9(s2)2
=V sll = S -- (5.77)

Eqs. (5.77!) can be used in estimating the characteristics of
the scatter of these statistics or in planning a number of experi-
ments (N) for calculating statistics with specified precision.

The process of the statistical analysis that uses as its
basis the theory of the sampling method of mathematical statistics
and assuming the construction of sample (5.66) is called the
method of statistical tests. This method is quite often used
in problems of analyzing the scatter of nonlinear systems.

The method of statistical tests can be used also in analyzing
a control process utilizing the mathematical model (5.2). Here
the process of obtaining the sample (5.66) is considerably
simplified, since constructing the sample of random variables V

V (2), V ( (5.78)

instead of sampling the realizations of random functions (5.65)
to a large extent simplifies the applied aspect of the investi-
gation, since the formation of realizations of the random-variable
vector with specified distribution of probability density f (V)

can be done by using standard programs of random numbers on
digital computers.

For the remainder, the procedure of the method of statistical
tests for mathematical model (5.2) remains the same as for mathe-
matical model (5.1) and (5.4).

In conclusion, we present formulas for computing estimates
of the statistical characteristics of solutions to nonlinear
equations (5.1), (5.2), and (5.4) utilizing the method of statis-
tical tests:
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N

MIXI '' = (X);
/=1N

I=1
MIXX--' Z X~i)X (XX* )N"-I 'i (5.79)

When computers are used, in place of Eq. (5.79) for inter-
preting the results of calculations involved in constructing
the sequence (5.66), we can organize an ongoing processing if /187
we use recursion relations in computing the estimates (X)N and

(XX)N for the statistical characteristics M[X], M[XX*]I:

( -) N- 9C- )"- '+ -LI N (XX (5.80)

In Eqs. (5.80), expressions (X)N-1 and (XX*)N-1 denote the

estimates M[XJI and rMIXX*]j obtained in the preceding experiment
involving the method of statistical tests.

In discussing the application of statistical tests to problems
in the statistical analysis of nonlinear differential equations,
we must consider the question of the convergence of estim&tes
(X)N, (XX*)N to the real characteristics M[XI,M[Xxj.] and the

precision of computing the sample means (X)N and the sample

covariance "matrix (XX*)N. In /797 are presented working formulas

for determining the required volume of the sample (5.67) on the
condition that a specified precision of computing the mathematical
expectation of the random variable obtained by utilizing the
Chebyshev inequality and the Lyapunov limit theoremiis 'achieved.

Table 5.1 gives the values of the number of elements of
sample (5.67) as a function of the number E characterizing the
range of error in computing the mathematical expectation of the
quantity

for a specified probability P = 0.99 that inequality kvE has
been satisfied:

TABLE 5.1

S. . .. 0,01 0.05 01 02
T, .... 100 000 4000 1000 250

N, .... 10000 400 100 25
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In Table 5.1, the number Nl is obtained from the Chebyshev

inequality, and the number N2 is obtained by using the Lyapunov

limit theorem. The Chebyshev inequality

gives a very rough estimate of the error of variable 6N. The

estimate obtained by using the Lyapunov limit therum

gives a more exact estimate of the error 6N"

Therefore, when calculating the volume of the sample (5.67), /188
we must use the second row of Table 5.1.

When assigning the volume of sample (5.67), we can also use
Eqs. (5.71) and (5.74).

From Table 5.1 it follows that to ensure high precision of
computing the estimates (X)N, (XX)N utilizing the method of

statistical tests requires multiple integration of the system
of nonlinear differential equations (5.1) in order to arrive at
sample (5.66) of high order. Accordingly, it is necessary to
examine other approximate methods of the statistical analysis of
nonlinear processes.

This possibility appears only for the model of a control
process described by differential equations of the form (5.2),
in which the random functions are represented by canonical or
noncanonical expansions.

In the method of statistical tests, for the model of process
(5.2) there are no hypotheses on the structure of the solutions
of an equation in random variables V, and therefore the volume
of sample (5.78) of the realizations of vector V, and this means
also the volume of the sample of solutions (5.66), for a specified
precision of the computations of the statistical characteristics,
can be quite large (Table 5.1). Obviously, the use of a priofi
information on the nature of the relationship between the solutions
of equation (5.2) and the elements of the random vector V of the
form

x'(t, V) = p(V) (5.81)

can significantly cut down the volume of computations in deter-
mining the statistical characteristics of function '(V). At the
present time several techniques have been developed based on various
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hypotheses on the nature of the relation (5.81). The principal\
of these is the method of complete linearization, the method
of statistical linearization /-9/, the method of partial linear-
ization /127, the method of incomplete linearization, the B. G.
Dostupov method /19/, the interpolational method of V. I. Cher-
netskiy /797, the method using the technique of least squares,
and the method of statistical nodes.

Let us examine the computational aspects of several of these
methods.

The method of complete linearization is based on the hypothesis
that the relation (5.81) is linear. The main relations in the
method of complete linearization have been examined in Section 5.2.
Use of the method of complete linearization requires the direct
linearization of the nonlinear equations(5.2). In several cases ,
direct linearization of nonlinear equations (5.2) is impossible
by virtue of the fact that the control AU is of a relay type,
or for other reasons. Then, by using the hypothesis of the
linear dependence of function (V),on random variables V, we can
write the following working formula:

()= (V= 0) F ( - - V (v= (5.82)

where v' is the realization of element v. of vector V in the /1891 1
computation of function c(V).

Eq. (5.82) can in several cases prove preferable to relations
in the method of direct linearization of equations (5.2), since
here there is no need for a direct linearization of nonlinear
equations (5.2).

Introducing the notation

bi= ( 1) -'e v o

and using Eq. (5.82), let us calculate working relations for
determining the mathematical expectationsand the dispersion of
function (V):

M( P(V)] = (V= O); (5.83)
m

2 l(V)J= b 2 [VI..175
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Eqs. (5.83) are written on the assumption that there is no
correlation between the elements of vector V and these formulas
are quite simple..

Method of incomplete lin6arization. It ,can turn out that the
function (V) is associated with the random-factor vector by
the function /367

T(V) = (V = 0)+ C*A+ 1 (),1 (5.84)

where uis the vector of strongly varying random factors V not
admitting of linearization of equations (5.2); and A is a vector
of weakly changing random factors V admitting of linearization of
equations (5.2).

Naturally, here the sum of the orders of vectors w and A
is equal to the order of vector V.

Using relation (5.84),.we can easily obtain working formulas
for computing the statistical characteristics of the function
¢ (V):

M I? (V)I = q (V = O) + M I, (o);
2 C' (V)] = C*R ,C + M [T1 (o)] - (M [t ((O)1)2;

R, = [*I. [A85I.

By analyzing the working formulas (5.85), we can note that
in the absence of a correlation between elements of vectors w
and , to determine M[p(V)]] and I [q(V)]] , we must investigate
the nonlinear stochastic system subjected to the random factor
W , whose order is less than the order of the complete vector V,
and we must investigate the linear system perturbed by vector A,
which can significantly reduce the volume of calculations when
statistical characteristics of the function (V) are being
determined.

Method of partial linearization. To set forth the method /190
of partial linearization, we can represent the solution (V)
as a Taylor series

M

A_=0 (5.86)

where, as earlier, is a vector of weakly-varying random
variables admitting of linearization.

In Eq. (5.86) I denotes the partial derivative of the

function q(V) in elements of vector I , which is a random function
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of vector w of strongly-varying factors or a function of first-
order sensitivity. Relation (5.86) enables us to compute the
statistical characteristics of M[(V)i and ao2[(V)]\ based on
the formula .

M [( V)] =M (o) ],

(o)) (V)l-+ V ~ ( )+ (M I (0)1). (5.87)

When Eqs. (5.87) are used as working formulas, we must
investigate the enlarged system of equations including, on the
one hand, equations of the form (5.2), and on the other hand,
differential equations of sensitivity of the form /27:

h,(to)= , (i= 1,2,..., m). (5.88)

In Eq. (5.88), we let h= "

The joint integration of Eqs. (5.2) and (5.88) enabled us
to calculate the required statistical characteristics of solutions
of the initial system (5.2) within the frame of reference of
correlation theory, however, here we must know the structure of
the function 4 (V) in the form (5.86).

Method of B. G. Dostupov. Underlying the Dostupov method
is the hypothesis that the solution of the system of nonlinear
equations (5.2) can be sufficiently exactly represented in the
form of a segmet of a Maclaurin series. We present the exposition
for the example of computing the statistical characteristics of
the function 4 with a single random variable v. We have /19/

(V) = k -Ov 0 V- " (5.89)

Using expansion (5.89), we get working formulas for computing
the moments of function 4 in terms of the realizations 4 (i)

obtained for specified samples of random variable v. Let v(1),
v (2) , ..., (N) be some sample of values of the random variablev. /191

Then, obviously, the following expression is valid

v! k - (5.90)
k (I )V =
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Multiplying the left and right sides of equality (5.90) by
some weighting coefficientsa s, let us sum the resulting equations

in the subscript s. We will have

N q N

Ss= .kO V =s (5.91)

If we assume that
N

*L's M [v ] (k 0,1,2,...,q), (5.92)S=1

then the identity A'

M II = Z V(,), I)
=(5-93)

is valid, since by virtue of (5.89) we have

k=O

The system of algebraic equations (5.92) can be used to
determine the numerical values of the weighting coefficients
l's and for the realizations of the random variable vs for which

we must calculate the function J (v).

The working formula for computing the mathematical expectation
of the function€ (v) is quite simple: it is necessary to add
realizations with assigned weight as

In the case of the m-dimensional vector of random variables,
relations can be written out that are analogous to Eqs. (5.92)
and (5.93) for computing the mathematical expectation of the
assigned function '(V). We will have

k O k OVldVr ... ()lr -
q m rn

=k Th-i T-I\ Vrs r . Iv r
'=1 k=O r1 =l rk==l k s.=1

q n m

178r,= 
r 

0
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whence we have the relations /192
N

•[rir = ..... 2...,m); (5.95)

s=l

The system of algebraic equations (5.95), like the system of
equations (5.92), is used for determining the realization of
random variables V,\ and the weighting coefficients as ( s

= 1, 2, ..., N).

Using the above results, we can easily write working formulas
for several particular cases /19/.

I. When q = 2, we can easily obtain for uncorrelated and
centered elements of random vector V:

N N

Sr 0, r =I r2
s 3 ua = ' . 1,2, . m)

S v s 02 r, = r2 (ri, r 1,2, .. m)O r (5.97)

The number of equations in system (5.97) is determined from
the formula 1i (mm J(im+2). When N = m + 2, we will have

the following working formulas:

MI I+ aP 3(v3)± Im+2 - Ym+12 2 

o [,(V)l m + 2 .2m+
S=1

,s 's ; +1 T (; 21 .. 'Vm);
0M+ = (-2 - ,9... v- VM). (5.98)(5.98)

II. When q = 3, working formulas (5.98) becomes

-I1
m

(5.99)
where

S s V m.
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Similar formulas for q ->:3.are presented in /19/. Thus, /193
application df the B. G.. Dostupov method boils down to the following:

calculating the table of realizations of random variables for
which it is necessary to calculate the function 0; and

treatment of the calculation results by formulas of the form
(5.96) - (5.99).

All the foregoing dealing with computing the mathematical
expectation and the dispersion of function 0 is valid also con-
cerning the elements of vector X(t, V).

Interpolation method of V. I. Chernetskiy. Since the solu-
tions to equations (5.2) are determinate functions of time and
the random variables v.(j = 1,2'2, ... , m), the approximate repre-

sentation in the form of interpolational polynomials in the factors
v1 ' v2, "..., v is possible for them. Let us denote the realization

of element vi of vector V by the set P1vj in terms ofVir,,j , where

subscript k. denotes the competing realization of the element

vi,3 and let us consider qi realizations of each element v..

Obtaining the set of numbers 'Ikl V 2k, , Vm,ml. let us compute

for each element in this set the function O(V) for the solutions
to equations (5.2), using here the methods of analytic (if this
is possible) or the numerical solution of the nonlinear differen-
tial equations. We will have

Pkj, k2, ..., km = 'k(,1  2k. mk)

The integral polynomials, represented approximately by the
function 0 when the method of point interpolation is used, will
have the following form:

q1, q, -1 i Aa ) M W(Vj)

kj, k2, n, j q i (V ° () -'t\ (5.100)

where

O i) (V1  V (v ) ... \J* Vi-q (5.100')

is a polynomial of degree qj with respect to the random variables

V.

are values of the derivative of pdlynomial (5.100') in the

random variable v. computed at the point v i- .
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Eq. (5.100). ensures at the integration nodes the coincidence
of the interpolational polynomial and the realizations of random
function 4(V). Let us apply the operation of mathematical expec-
tation to the left and right sides of Eq. (5.100). We will have

A. ......1, (5 1010

The quantities /194

PkI, k'I, 111 j

f'q (v) dv dv ... dv,,,

., ,,, ), (k, = 1, 2, . . ., ; k2 = 1, 2, , q; ; , 2,

P. j k2....., km

and are called /79/ Christoffel numbers. By virtue of the earlier
assumption that there is no correlation between the elements of
random vector V, Eq. (5.102) can be represented as

=. k2, k (5.103)

that is, for the vector of independent random variables the Chris-th
toffel numbers can be represented as the product of the correa
sponding one-dimensional Christoffel numbers.

With reference to Eq. (5.103), let us write out the working
formulaflowingor computing the mathematical expectation of the function

A1 , 2..-.,k, kl, 2=...,k,,, J=l " (5.104)

In /79/ it is shown that the approximations converge with
the use of the interpolational method to the exact value of the
stochastic characteristic of function :4 , and in this work it
is shown that in this case the Christoffel numbers are the roots
of the orthogonal polynomials in a weight that is equal to the
density of the distribution of random variable v.. Here the

following theorem/79/ is valid: "If one selects as the inter-
polation nodes. the roots of orthogonal polynomials in a weight
that is equal to the density of the distribution of random variable
v., when n interpolation nodes fare used, the interpolation method
gives exact values in the class of polynomials of all degrees up
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to. the degree 4 = 2n - 1, inclusively. Here. it is not possible
to. enlarge the class -of absolute precision _for any other poly-
nomial approximation." Also given in /7,9/ are. the interpolation.
nodes and the Christoffel numbers for the normal distribution of
probabilities.

Thus, selecting the number of nodes for each of the elements
of vector V, we can write out the sets of coordinate (nodes) and
Christoffel numbers which enable us to determine the entire set
of interpolation nodes. For the remainder, it is required to
compute the function O(V) at these nodes and to treat the results /195
using working formula (5.104). Eq. (5.104) can also be used for
computing the mathematical expectation of the square of function
O(V). To compute the mathematical expectations of the square of
function O(V), let us use the formula

[ q1 , q2  9, im ,q (

kI, k2. k j41  (vi,.) ( v -vi

lk, q2 .... q* 2 ( l( W , . 2VO

where (V )
Pk, k2, ... , k r1 , .V).i -

M q, (
VQ

i )

P =' ;, " (Vi "

kI= k 2 Pk, Ik, k2 .... k . k

P .k2..... k,; 2- ..... " = j (5.105)
where

R W=44 ; },, (V -V . ] (5.1o6)
therefore

ql, q2, m . .. I .- ... m
Skl, (2,....., n kj0 )

kl k2, m j
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Referring to the property of Christoffel numbers /79/, we will
have

P,=Pj,_J

and with reference to this Eq. (5.107) /Eic, probably Eq. (5.104) /196
is meant/ becomes

q1, q2 ,.  qm

k1,. "", kj=1

As a whole, summing up the foregoing concerning the Chernetskiy
interpolational method, we should note that the interpolational
method has quite broad potentials in the sense of'precision 5/in
determining the mathematical expectation of function q(V). However,
the number of nodes here can be appreciable. This corresponds to
a considerable volume of calculations in computing the function at'
the nodes Jassociated with integrating the system of stochastic
differential equations (5.2). Therefore the problem of reducing
the order of the vector Jof strongly varying random
variables is one of the key problems in multiple analysis of non-
linear stochastic equations of the form (5.2).

As was shown above, in this case we can use the method of
incomplete and partial,linearization in which the statistical
characteristics M[(p(t, )f], M[p 2(t, o)) ]i M[hi(t, o)hT (t, o)] (i=1, 2, .. m)
can be computed by employing the Do,stUpov method, the method of
statistical tests, or the Chernetskiy interpolational method.
Obviously, a combination of the method of incomplete or partial
linearization with the interpolational method enables us to
considerably reduce the volume of computational work in deter-
mining the statistical characteristics of nonlinear stochastic
systems.

It should be noted that in the method of statistical tests
it appears possible in the course of computation to monitor the
convergence of the estimates of statistical characteristics even
if only from the fact of their variation with increase in the
number of tests, while in methods based on any hypothesis on the
structure and nature of the relationship (5.81) this monitoring
is not available. This means that in the absence of a priori
information on the structure of the function (5.81), it does not
appear possible to obtain reliable information on the statistical
characteristics of the function O(V) empl&ying these methods
(the methods of linearization, the Dostupov method, and the
interpolational method). Therefore the use of these methods in
single statistical analysis of nonlinear processes of the form.
(5.2) can scarcely be justified if we do not know Istructure i:
of the relationship (5.81).
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Use of methods of the statistical analysis of nonlinear
processes (5.2).\based on hypotheses on the structure of the
relationship (5.81). is advantageous in multiple analysis of
stochastic processes of the control-of flight vehicle motion
in the earth's atmosphere. However, an-additional problem
arises here -- the problem of studying the structure of the
relationship (5.81) for a substantiated application of one of
the methods of the statistical analysis of the control processes.
Essentially, this is a problem of resolving the vector of random
variables V into components that include weakly-changing and /197
strongly-changing random factors, and determining the components
of vector V that significantly or insignificantly affect the
control pro'cess (5.2).

Since this problem is of independent interest, approaches
and methods of solving it will be examined in the next chapter.

Of interest is a group of methods of the statistical analysis
of nonlinear systems based on using an approximate representation
of the function O(V) with-the polynomialm m

,: (V)= ao+2]ajvj+ 2 a,jvi+...
I=.1 I<;1 (5.108)

on a set -v' of random variables V, or its expansion in a Taylor
series in the neighborhood of the value V = 0:

(V) (V ) o ,+ 2 o1 (5.109)

If the representations of the function $(V) in the form
(5.108) or (5.109) are obtained, that is, if the numerical values
of coefficients ao, a., ai. , ... and the partial derivatives

0-v i -;vi. ... we can posit as the basis of the algorithm of the

statistical analysis of the process (5.2) the following relations:

M [I (V)| M (V)1, (5.110)

(5.111)

and so on.

For the case of the quadratic representation of the function
d(V) with polynomials (5.108) and (5.109), Eqs. (5.110) and (5.111)
become:
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M [C(V)^=a 0 + a(,+ [vaM ,
1=l

M[M2 (V)]= a aM 2ap, agM 2
i=1 I=1

m in

+2 Z ajl IvI] M [vf] + V, 12 [vI]
i <j=1 I=1

(5.112)

and

Si()l = V o) + 1 ._ Om .

/198

M .=. O(V = ) iT [J Vl [V +

i.-L M [V2] M [v2j

(5.113)

respectively.

For the linear model of the function

91 (V) = ao + av
I=1

or

- (V) = ( V =0 ) + v,

Eqs. (5.112) and (5.113) are considerably simplified and are of
the form

M p(V)] = ao; M [r( V)] = a aM [ (5. 114)
1=1

and
Mand .M (V)J=p(V=O)

M [(V)] = (V 0) + (5.115)
1 2 1] (5.115)

respectively.
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To employ Eqs. (5.112) - (5.115), we must indicate the
approaches in computing the coefficients ao,a, a,(V-0), ,
and so on. .v. _V__V

In computing the coefficients a ai, and aij, we can use

the method of least squares /35/, enabling us to find the unknown
coefficients from the condition of the optimum approximation of

the function (V)J with the polynomial (V) of given degree in the
sense of ensuring the minimum value of the criterion df the
approximation quality

N = _( (5.116)

where ,i[Vl is the value of the function for the specified

realization of vector V = V(i) %1(?"V is the value of the

polynomial for this very same realization of the vector of
random variables V.

Introducing the notation /199

A""= (aa a ... a,,a a,. .a... a a ..a n ,
U l i ) ,(i) 2(t) (1) (i) 2(i)

P,'(i) IV 1,~ 7112 Vin V1 1 V V2 ... nl '') .

we can write criterion (5.116) in the form

S= 'S- PA* S-PAj. (5.117)

Determining the partial derivative of the right and left
sides of equality (5.117) in vector A and equating it to zero,
we get

O = - 2 (S - PA)* P = OI

whence it follows

P PA = PS.7 (5.118)

We can write the solution to equation (5.118) in the form

A= (P*P)-T S
(5.119)
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In the linear model of function O(V), the vector A has the
dimension N=nm+-l . For the quadratic model of the function O(V),
the order of v-e-tor A increases to.'N=0,5(- 2+3m+-2) where m is the
order of vector V.

Accordingly, the number of equations in computing the function
4 (V) must be larger than N in order for a matrix that is the
reciprocal of the matrix P*P to exist.

Below the numerical value of vector A obtained as a result
of computations based on Eq. (5.119) will be referred to as the
estimate of vector A and will be denoted with A.., If ,NJ, , Eq.
(5.119) can be used in estimating the criterionj of the quality
(5.117) characterizing the exactness of the representation of
function O(V) with polynomial $ (V). Let us present several
transformations of Eq. (5.117), using Eq. (5.119). We will have

= Is - PAl I[S - PA = [S-PA]* IS - PA =

= [S - Ps(P P)- P: [S - P (P"')- P.S] =
= SS - S P (P*P)- -P* S

(5.120)

or

(5.121)

Eqs. (5.120) or (5.121) can be used in estimating the exact- /200
ness of the approximation of O(V) with polynomial $(V).

The method of least squares for constructing polynomials
(5.108) can be successfully used for a small order of the vector
of random variables V and for a low degree of the approximating
polynomial.

Table 5.2 gives the numerical values of N for polynomials
of the first and second degrees. From the table it follows that
even for an order of vector V equal to 10, constructing the quad-
ratic polynomial for the function O(V) poses considerable diffi-
culties of a computational nature.

Table 5.2

,Degree ! "

of polyiomial 10 1 1 20 25

1 2 6 11 16 21 26
2 3 21 66 136 231 351
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These difficulties are related to the inversion of the matrix
C = PP. of order N X N, containing =N 2 +' distinct elements

2
(when N = 66, we have M = 2211).

This procedure of computing the statistical characteristics
of the function O (V) based on its approximate representation has
significant advantages over the Dostupov method, the interpolational
method, and the method of partial linearization in that here we can
determine-the numerical value 6f the error of representing the
function k(V) with a polynomial $(V) with a given degree in the
form -

M(M

where

Knowledge of the characteristic 21 of error c of the
representation of function O(V) with polynomial $(V) enables
us to write the expression

and to indicate the error in computing the required character- /201
istics of the function O(V):

M [ ( V) = M [-(V) + M f]; - f?,(V)I V] (5.122)

This method of computing the statistical characteristics of
a function based on its approximate representation can be used
also in other systems of representing the function $(V). In
principle, we can form an arbitrary system of functions vi(viXi)
and set up a representation of the form

im m
(V) = ao + a (v, X,) + aijy, (, 7,) rj(vy, )

i=> to(5. 123)

or

?(V)= a. +V a.,-, (vi, Zi).
=V .(5.124)
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For example, the functions vi(vj)can be of the form:

71 (vI, %,) = sin Zv,;

,-Ti (vi, , b, vi) = sin zv + b, cos v

and so on, where bii,@_V are the unknown constants.

In this case, to find the estimates of all the unknown coeffi-
cients ao,iaij, .. i,Y, bil , and so on, the method of least squares in
the above-presented form cannot be employed because the unknown
coefficients can appear nonlinearly in the selected system of
functions yv)Iand in Eq. (5.123).

Substituting Eqs. (5.124) into criterion (5.116)

N

N ==1 _ .(i (5.125)

let us set up a function of many variables in the unknown coeffi-
cients ai and xi. To find the numerical values of parameters

'ai and xi , in practice it is difficult to use the necessary

conditions for the minimum of criterion (5.125) in the form

O=°a -1 o (5.126)

since the system of equations (5.126) is nonlinear relative to a.

and xi and its direct solution usually poses considerable diffi-

culties. Here we can find of assistance the numerical methods of
seeking the extremum of a function of many variables JN. This

problem is quite simple computationally, since the criteria (5.125)
is analytically expressed in terms of the unknown parameters and
multiple computation of its numerical value on a digital computer
does not usually represent a barrier to the approach of constructing
a good approximation of the function $(V). An advantage of the /202
process of computing the statistical characteristics of the func-
tion 4(V) by its representation $(V) lies in the fact that for
a restricted number of experiments in the computation of the
function O(V) for specified realizations of a vector of random
functions V, we can construct an approximation of the function
$(V), estimate the error of the resulting approximation of the
function, and find the required characteristics of the desired
function.

This approach. of the statistical analysis of control processes
in the earth's atmosphere is obviously necessary when computing
one realization of the function k (V) involves large outlays of
computer time in integrating equations (5.2).
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When setting up the model (5.109) for the function 0 (V), we
must compute the partial derivative l, 0Y iemploying the

Ov, OV w v ... I I
solutions to Eq. (5.2). In practical applications, the function
O(V) can be given as a function of the phase coordinates of the

process (5.2), for example, in the form

pi(V) G,(X,T, V) (5.127)

or
T

? ( V) G (X, t, V) dt,
o 1 (5.128)

where T is the duration of the control process.

Since the partial derivative , ~j for Eqs. (5.127)

and (5.128) are of the form:

9d, dG, OX OG,
Ovi - Ov +  o ';

152T, (OX *2G, dX dG, d2X 02G0 OX a 2G,
oviOvo ov)X-' Ov X ovi + o,0v +v Ovidvi1

Tr dG2 X G dt;
Ovi dX d i vi

0Yed dX* .dX dG dX O'G, dX OG,

IVay o 0V X" AUv aOx dOv v j J 1 vj + d (5.129)

then, introducing the notation

oX 02X"ht= L , hi = D-4a (i' j 1,2,..,m),v 'I OvIOvi
we will have /203

dp, O .G, .dG
0V, OX OO

h. Ui -2C / + hj + +G

T
)f2a hi + PG-- I dt,

)i2 'F2 a Th h +Ov ovj f O

_G O(5.130)
+ Zj+ u dt (i<j= 1,2,...m).
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In Eq. (5.130) hi and hij are functions of the sensitivity

of the solutions to Eq. (5.2) in random variables v. (i = 1, 2, ... ,
m). To compute them, we can use the differential equations of
sensitivity /50/.. Let us write out the differential equations
of sensitivity for a nonlinear model of the control process (5.2).

Obviously, for Eqs. (5.2) represented in the form

X1 =fI(X1, X,..., X/1,V, t),
x, (to) = x, (l= 1, 2, ... ,n). (5.131)

'therffllowing system of differential sensitivity equations of the
first .and second orderls :

S(ha ), h(2), .. ,

I (, h(2), 00),

n n n
I ()fi Mk) -4- 02f, h (k)h(v + 02f' h0) +
kl 

O X k  
I , a1 Oox, i Ovivj'

h,(to)= hij(to)= (i j= 1,2,..,m).
(5.132)

The joint integration of systems of equations (5.131) and.
(5.132) with V = 0 enables us during a single integration to
compute the function O(V = 0) in all the necessary partial
derivatives for setting up a model of the function $(V) in /204
accordance with Eqs. (5.130).

It should be noted that model (5.109) can be used only if
the function O(V) is differentiable with respect to its arguments.

Analysis of the above-presented approximate methods of the
statistical analysis of a control process described by Eqs. (5.2)
enables us to establish the common ground in approximate methods
of the statistical analysis of nonlinear systems:

1. Selection of the realizations of vector V (sequence
(5.78)) in the space QV in which the function O(V) is computed

for the solutions to Eq. (5.2);

2.. Treatment of the elements of sequence (5.66) composed of
realizations of the function (V) or solutions to Eq. (5.2) for
elements of the sequence (5.78); and
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3. Verification of the exactness of the resulting estimates
of the statistical characteristics.

Setting up the sequence (5.78) of realizations of random
vector V in the method of.statistical tests, the Dostupov method,
and the interpolational method usually involves properties of
the density of the probability distribution of vector V. Essen-
tially, in the method of statistical tests, the elements of
sequence (5.78) must satisfy the assigned law of the distribution
of probabilities f (V) of vector V. In the interpolational method,

the properties of the function f (V) are used in computing both the

interpolation nodes as well as the Christoffel numbers. In the
Dostupov method, the properties of function f (V) are used both

in computing the nodes at which the functioniis computed, as well
as in determining the weighting coefficients c (s = 1i, 2, ...)

necessary in solving problem 2, that is, treatment of sequence
(5.66). However, the elements' of sequence (5.78) in the Dostupov
method and in the interpolational method are not associated in
explicit form withthe density of the distribution of probabilities
of vector V.

The solution to the problem of setting up the sequences,
(5.78) and (5.66) in the methods of statistical analysis of non-
linear systems can be viewed assa process of experiment planning,
since experiment planning is the planning of a sequence of tests
(experiments) following a scheme that exhibits some optimal
properties /77/.

Since the selection of sequence (5.78) in these methods is
associated with the algorithm of treatment of sequence (5.66),
obviously the first problem in methods of the statistical analysis
of nonlinear processes is the problem of experiment planning.
Accordingly, in the method based on using the models of function
k(V), computing the sequence (5.78) can be based on methods of

the theory of optimal experiment planning /,T2, 447 and the methods
of multifactor analysis.

5.4. Method of Statistical Analysis of Control Processes with /205
Discrete-Continuous Model of Perturbations

In the discrete-continuous model of specifying the perturbing
actions, the process of investigating the statistical characteristics
of a nonlinear stochastic system becomes considerably simplified
both as to the planning of experiments as well as in the inter-
pretation of their results. Suppose that in this model of pertur-
bations all the discrete random variables are arranged in the form
of the sequence
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A', A, .._, AN (5.133)

for which the probabilities of the states of the discrete random
variables

i,, V . (5.134)

are specified.

In the sequence (5.133) we can single out the events

A =A- A ,AU>....,A (',), j - 1,2, (5.135)

and the probability for each of these can be computed by using
the series (5.134).

Then we can write that the right-hand sides of the nonlinear
differential equations of the control probess will be determined
by the sequence (5.135) of events, that is,

= F(x, A, t) X(to)=X o. (5.136)

Obviously, the solutions to Eq. (5.136) will also be determined
only by the series of events (5.135), that is,

S(t) x(t, A). (5.137)

Thus, the solutions of nonlinear equation (5.136) are discrete
random variables with possible values (5.137) with probabilities

To compute the central and initial moments of k-th order for
several functions of the solutions to Eq. (5.136), for example,
O(X), we can employ the following formulas from probability
theory:

01. M k P 11[A J p IA j ,;=, [ A(5.138)

; = M [(M- M [?]l)k [A .

j=1

- y A-p(Af ) p [Af. (5.139)
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The resulting working formulas (5.138) and (5.139) are quite /206
simple for computing the statistical characteristics of the assigned
functions of solutions to Eq. (5.136). Let us illustrate the fore-
going with an example of a stochastic system that has two discrete
random variables in the right-hand'side, each of which has three
states (-1, 0, 1) with probability 1/3.' Then the matrix of experi-
ment planning will be of the form

A=- -1 j00 0 1 1 1

The probability of each of the events A. is .

Obtaining for each event A. (j = 1, 2,. ... , 9) the solutions to

Eq. (5.136), we can compute the statistical characteristics of
the function 0 (X) based on Eqs. (5.138) and (5.139), for example,

9

j=I

J=1

and so on.

The applicability of this method to problems of investigating
the scatter of flight vehicle trajectories as well as other sto-i
chastic processes will be determined by the number of random
factors and by the number of their states, since they define the
number of solutions to nonlinear differential equations (5.136).

Accordingly, even for the discrete-continuous model of
representation of perturbations, high significance lies in the
problem of analyzing the significance of random variables and
reducing their number, given the condition that this does not
lead to considerable errors in the numerical values of the
statistical characteristics of the solutions of the nonlinear
equations.
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CHAPTER SIX /207

INVESTIGATING THE EFFECT OF ATMOSPHERIC PERTURBATIONS ON
THE MOTION OF FLIGHT VEHICLES IN DENSE ATMOSPHERIC

LAYERS

6.1. Investigating the Significance of Atmospheric Perturbations

The problem of investigating the significance 6f random
perturbations in the motion of flight vehicles bears both indepen-
dent significance in investigations of the motion of flight vehicles
in dense atmospheric layers, as well as applied significance in
multiple statistical analysis of the trajectories of flight vehicles
in problems of optimizing Icontr61 systems. The necessity of inves-
tigating the significance of random variables v. (i = 1, 2,

m) of the mathematical model (5.2) in forming the scatter of phase
coordinates X with respect to their unperturbed (reference) values
X arises when solving problems of the numerical optimization of
processes of controlling the motion of flight vehicles in dense
atmospheric layers when adopting solutions on the utility of
estimating and predicting both atmospheric perturbations as well
as aeroballistic parameters of flight vehicles.

If the motion of a flight vehicle is described by differential
equation (5.2), and if the quality of the probess is characterized
by some functionI==M[j,(X,T)], then by virtue of the dependence of
the solutions to Eq. (572) on the elements of the random vector 1
V:xi(t) =xi(t, V) (i=,2...., n)Jthe function pN (X T) in implicit form

depends on the random values of vector V and is of the form wV)-= 1(X.T)j

The problem of investigating the significance of random
variables v. in forming the scatter of the function O(V) is

classified as a problem in multifactor analysis; in recent years,
a fairly large number of studies /12, 44, 58, 75, 77, 81/ have
been devoted to elaborating and applying this class 6f analysis
in various fields of technology. Underlying methods of multifactor
analysis of the function k(V) is the problem of obtaining some-
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model of the function $(V). on the condition of the optimal approxi-
mation of the model with respect to the test function '(V). Since
in practical problems it is impossible to obtain an analytic expres-
sion for the function O(V) owing to its dependence on the solutions
to differential equation (5.2), except for the case of describing
the motion of a flight vehicle with linear differential equations /208
of the form (5.10), we have to limit ourselves usually to repre-
senting it with the polynomial

Sa+( =+ a;v, 0+B .... (6.1)ikI idj=1

The problem of constructing an approximating polynomial (6.1)
can be solved within the frame of reference of classical regression
analysis, employing the method of least squares /11/. To do this,
obviously we must form some sequence of the random vector (5.78),
and for each of its elements we must compute, by integrating
equations (5.2), the function 4 (V), that is, we must set up a \
sequence d'f functions (sample of realizations):

O),_ .., _) (6.2)

and then we must treat the sequences (5.78) and (6.2) by empl6ying
relations (5.109) and (5.121).

Setting up polynomial (6.1), by analyzing its components on
the set Q 'we must solve the problem of estimating the contri-
bution of each random variable to forming the scatter of the
numerical value of the function O(V).

The dispersion /817, component / 1/, and factor /357 analyses,
and methods of experiment planning and interpretation /31, 36, 42,
77/ enable us to solve the problem of estimating the contribution
made by random factors (elements of vector V) to forming the
scatter of function O(V).

Let us assume that we have set up a first-degree polynomial

(V) = ao + aj (6.3)i=1

and that we have computed the statistical characteristics of the
function :

M [ (V)I, M [p (V)I, , [,p(V)].

Let us obtain estimates of the first two moments of the
function (V) by using representation (6.3), on the assumption
that there is no correlation between the elements of vector V
and the centeredness of its elements. We will have
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M [F ( V)] = a,

M [If(V)=a + afMv 2J,
i=1

(6.4)

Under the normal and equiprobable i(viE[-bi, bi])] distributions /209
of the elements of random vector V, Eqs. (6.4) become:

MI (V)j = ao,

M *(V)=a a2 ,

i=1

and

M (V)1 = a,

t=1

"- (V- a 2b2

From Eq. (6.4) it follows that the contribution of the i-th
factor to forming the dispersion of function O (V) is !defined by
the expression

7I') = aM vI, (i= 1, 2,...,m). (6.5)

Let us introduce the coefficient of significance for the first-
degree polynomial

Sj (6.6)

Table 6.1 gives the expressions for Eq. (6.5) and (6.6) for the
normal and the uniform equiprobable/ laws of the distribution
of elements of vector V.

Similar relations can be obtained for the polynomial of
second degree:
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a(V)= ,+ aiv, + " a,,zvj.
. i= j (6:7)

Table 6.1

Notion eneFormulas under Frmulas under)jni,
formula ornial distr. form distruti n

M = (+ ' aM [v ,

1-2 ((V)J=a a Va a + [v ± a2M[v +
ia?1 -f=1M

f " ,71 
171

(We ,irdc In

a- ,,M[ 4i T+2 a, , j 1 M l.[v]+ ax

1=1

? ei a,M[V 2M [v.

We introduce the notation
]- 1

S = a1 = a

Then we-get the following expression for the coefficient ,.

characterizing the contribution of the i-th factor to forming the
dispersion of the function p(V) with respect to the second-degree
polynomial

+ M [v2] M [V21.

,- - a2M [vi] + a, [. 4, [(A [2] )2J +

j- 4 (6.8)
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Let us define the coefficient of significance by. the formula

(2)

Using the computed coefficients '11M and 6 , we can divide
all random factors into essential and unessential. Unessential
factors need not be taken into account in the further investigations.
Of the essential factors, we can distinguish the weakly and strongly
varying factors, that is,factors for which we can either use a
linear model or set up a more complicated nonlinear mathematical j
model. To solve this problem, we must compare the linear and non-
linear (quadratic) models of the function under study.

Let us define the coefficient of nonlinearity byuusing the /211
relation

(6.9)

where

. -(6.10)

Substituting (6.10) into Eq. (6.9), we can obtain the following
expression for estimating the coefficient of nonlinearity:

86q 1 - Ax (6.11)

where

Table 6.2 gives a listing of the main working relations for
solving the problem of estimating the significance of random
factors by employing a second-degree model.

By computing the numerical values of the coefficients ~,h

, ~ichwe have introduced, we can solve the problem of

estimating the contribution made by each of the random factors to
forming the scatter of the function p(V).

If T16AI ie], the i-th factor can be regarded as weakly varying,,/212
otherwise -- strongly varying. Here E is a prespecified positive
number determined by the required precision of computing the
dispersion of the function.
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Table 6.2

Notation General formulas- ormulas underj Formulas undJr uni"
S.iormal-dtstr, form- ditr t-iutoh

2 22 -- "

+-M a~? 2al + 4a

a• 4m 2a? M I - -- 2

+ M [] ~ 2iM [vj22 24

(v,2) - (M [vfl )21+ + 62 + + a I
a4I I aM y M a

4 Ja 2 N1 2m
+M +-- + 36 b I 36 '

J=
1  

I=1 j=1

also enables us to solve.the problem of differentiating essential
and unessential random factors. Thus, we will have the coefficient
of significance

m__2 ' 1(6.12)

If i) ora5 is smaller than a prespecified number 8,

then we can neglect the i-th factor. We must make several remarks
concerning the selection of the numbers E and S .

Usually the realizations of the function 4(V) on a digital
computer are computed with some error Aw . If we assume the error
of computation to be random with a normal law of the distribution
of probability density and with specified statistical characteristics
M1AI]=o, D [A]\-cp=[Ac2 , the lower bound of the admissible values of
the coefficients of significance can be determined by the following
dependents:

The upper bound of the admissible values of these coefficients
can be specified in accordance with the requirements of the
precision with which the statistical characteristics of the function

are computed.
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Note that the error in computing the realizations of the
function O(V) on a digital computer is determined by the error
of rounding-off as-sociated with the.finite: capacity of the arith,
metic units of the digital computer,.the errors of the method of
integration, and the errors associated with the incorrect selection
of the integration step.

To use Eq. (6.5) - (6.12), we must set up fpolynomial (6.3)
employing regression, component, dispersion, or factor analysis.
Since a fairly large number of studies in the domestic and foreign
literature have dealt with a treatment of the latter, it is
expedient to set forth the method of stochastic approximation for
constructing the polynomial (6.1). The method of stochastic
approximation /36/ is associated with stochastic experiment
planning, which in large measure meets the specifics of the
problems of investigating nonlinear stochastic processes, namely:

randomness of the factors determining the course of the
processes (5.2);

a large number of factors, where the known determinate schemes
of experiment planning are sufficiently cumbersome in the compu-
tational sense; and

use of digital computers for solving problems of investigation.

/213
6.2. Method of Stochastic Approximation

Let us assume that the function O(V) under study is a func-
tion of the m-dimensional vector of random factors V, whose elements
obey a specified symmetric law of distribution of f (V) and satisfy
the following conditions:

mathematical expectations of the random factors are equal to
zero

M v = o (i = 1, 2,..., n), (k= 0 1, . )

the factors are uncorrelated random variables,

Mi'f~v~v =o (Vv) =,2,.U, in).

These assumptions do not diminish the generality of the
problem, here enabling us to obtain simpler working relations.
Suppose the set 'IV includes all possible states of the elements

of vector V. Then the problem of constructing the approximating
polynomial (6.1) for the function O(V) can be formulated as a
problem in the optimal approximation of the function on the set

201
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The error in, approximating the function ' (V) with the poly-

nomial t(V) is

s(V) cp(V)-?(V). (6.13)

By virtue of the randomness of functions V, we can view the error
of approximation as random, and we can consider the statistical
characteristics of the error as a measure of the error:

the mathematical expectation of the error

J,= M[ ] (V)fo(V)dV;
Q " (6.14)

the second initial moment of the error

I=M[F]= (V)f,(V)dV; I
. ., (6.15)

the second central moment

J3= A 1f(e-MI)1' 1; (6.16)

the probability that the error :E(V) does not exceed specified
limits [s(V)-I < -

F)11 (6.17)

where E is the specified error of approximation.

We-can present further a fairly large number of criteria for
the precision of the approximation of function O(V) with the poly-

nomial b(V), however, Eqs. (6.14) - (6.17) are the most applicable
from the physical point of view and characterize the value of the
mathematical anticipated deviation of the error from the zero
value.

Choice of the criterion and its mathematical description in /214
analytic investigations is always subjiect (to criticism. In.
practical problems the situation is handled much simpler, since
the physical meaning of the problem sometimes permits describing
the requirements on the problem being solved clearly in a mat he-
mathical sense. Three approaches to forming the criterion are
well known,4in the problem of approximating functions:

1) exact coincidence in all experiments (approximation
nodes);
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2) smallest value of the sum of the squares of the deviations
of the polynomial from the approximated function in all experi-
ments (method of least squares); and

3) minimum value of maximum deviation of polynomial (V)
on the function on the set V (Chebyshev criterion).

Criteria (6.15) and (6.16) reflect most strongly the require-
ments on the above-formulated problem of the optimal approximation
of the function q(V) with a polynomial and can be related to
criteria of the precision of approximating the function 4(V) with
the polynomial with the weight of the probability density of the
random factors.

Let us find the necessary conditions for a minimum of the
criterion for the quality of the precision of approximation (6.15).

Obviously, from the condition

I J -0 (i j .. 49=1, .,mOa... = 0 • <.,1 .

we get the following system of algebraic equations:

I OJ2 = (=1 2,... m)

1 DJa d lI2 a-"a(V)a 0 (k = 1, 2,..., m);

2 = M (V) =0 (k<1v= 1,2,..., m);

S -=M [e(V) =0 (k v-p=1,2,...,m)(

, I ~ o k (6.18)

add so on.

The order of the system of algebraic equations (6.18) is
obviously determined both by the number of the random factors
V as well as by the degree of the approximating polynomial (6.1). /215
Above we have written out a system of equations for determining
the coefficients (parameters) of a fourth-degree approximating
polynomial. Let us expand the system of equations (6.18), by
using the above assumptions and operations.
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Since -- , ,

- v (1 = 1, 2,..., m):

= - vv (k <I= 1,2,..., in);
da l

a - - vv (k 1 - = 1, 2,... m);

- -- vvv (k 1< v p= 1, 2,., ), (6.19)

then with reference to Eq. (6113) we can rewrite the system of
algebraic equations (6.18) in the form:

M (IV) - (V)i = 0;

M[(c,(V)- (V))v, =0 (1= 1,2,. .,m)

M [(0 (V) - 7- (V)) VAI = 0 (k < 1 1, 2,. n);M G V(V - () vv,v =0 (k I = 1,2,..., in);

M [(p (V) -- (V)) v,vtv ,  = 0 (k < 1 < 1,2,..., m)

or

Ml I(V)J = M (v) ;

M[ ((V)v,1 = M[(V)vj (1=1, 2,... m):

M Ic(V),v,l = M [ (V)v,v, (k < = 1, 2..., m):

Mj[j(V)v,,v ]= M[(V)vI vv (k< I<vl,2,...,m);

MAl (V)v v, vJ = l ( VAV V, (k lI v .=

= 1, 2,..., m).
(6.20)

We introduce the notation /216

Z'= M If (V)j;
Z - M (~11  (V)v,I (I = 1, 2,..., min);

Z('l = M [9(V) kvil (k 1 = 1, 2,..., m);
Z ,i~= M[(V)vkv v,] (k<1<v= 1, 2,..., in);

Z -A = , 1l[ (V)vkvIv.vp] (k<l1<v p= 1,2,..., )' (6.21)
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then we can write the system of equations (6.20). in the form:

zo= M .f (V)j;

Z = M [ (V) v, ( . = 1, 2,..., );

Z = M (V) vkvIv, (k I = 1, 2,...,m);

k p (V) (VkV4 Vvrl k k1 <v < p 2,..., m)
Z = M.... (V)vvLVvj (k l.<v p= 1,2,...,m). (6.22)

For the criterion (6.16) represented in the form J3= ,1

we ',can also obtain a system of equations as follows, analogous
to Eqs. (6.22):

1 dJ:, "1 dJ DJS0 ao = 0;
2 oa, -2 Da, -J

1 OJa 1 J, J 1

2 8a- 2 8a ' "a1  = 0 (1= 1, 2,..., m);

1 0J , I OJ , J01S- =0 ( l= 1, 2,... m);
9ak = da -2 da , '

SJ 1 dJ dJ

" 2 - J, 0-o (k 2 Ia v = 1, 2,...,m);

1 -= 2 J3 _j - -J =0 (k. v p= 1,2,..., ). (6.23)

With reference to Eqs. (6.14) and (6.18), we can transform

the system of equations (6.23) and write it as:

M (V) TME(V)M

S(V) E= M[(V) JL (= 1,2,...,m)

l (V ) 11 z2 (V)J1 4 , (k l= 1,2,..., im.)

(6.24)

IE (V) L =[()M (klIv 2,..., /217

M I[S (V) .-A14 j (V)IM[ ] (k-1vd...
aklp klyp

Referring to. Eqs. (6.14) and (6.19), we can compute:
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M = -1;

M[+ a.] = - M [vI ( = 1,2, ... , m);

M C - 4 ]vv (k/= 1, 2,..., m);

Mr JFI]=-M [ uv] (kl 1v= 1 2,..., m);

M ] = - M[vv,j (k -1 <<p= , 2,..., m).(6.5)

Inserting Eq. (6.25) into Eqs. (6.24), we get

Al [F (V)1 = M Is (V)];

- Z+ + Z,,M IlJ = - M [?(v )v +
+ M[1 (VjM[vt] (I= 1, 2,..., m);

XM[ vvt (k<l= 1, 2,..., m)

- Z+ ZoM Evkvv,] = -- M[ (V) vvlv,] + M/ (v) X
X M [v vkvt] (k 1<v= 1, 2,..., m);

k- Z - ZM IVkVIV.,VP] = - Al K (V)Z VpJ +

+M[(V)M[vv,,vPl (k<<vp= 1,2.... (6.26)

We can easily show that the first equation of system (6.26)
degenerated at identity. This means that the coefficient a

o
cannot be determined from the necessary conditions that the
criterion of the precision of approximation (6.16) is optimal.
It is defined from the condition of the zero-identity of the
mathematical expectation of the approximation error M[ ]-O.

After referring to the earlier-made assumptions on the statistical
characteristics of vector V

i~, ',,1 ( (i : , 2. . In; k 0=0. 1 .

the system of equation (6.26) can be written as: /218

Z M (V) vj (1= 1, 2,..., In);

Z I2'= M, '(V),-vI (kIl = 1,2,..., m); / (6.27)
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Z3= M [v (V)krv, (k.14v = 1, 2,..., m);
z,, - ZoM ~] = M (V)v,] - M[ (V)M [V2 ] (k=

= 1, 2,. .. (, m);

Z kk, =M (V)vkvL] (k<l= 1,2,...,m);
z(4 - ZoM )] 4 4] M (V) V]
-- ,[]M[v,1Ml k<I=l,2,... in);

Z (kk = M (V)vkv~] (k< = 1, 2,..., m);

z 1MV1= M[(v) ] (k[<V2I = <I,2,.. );

k,,p (VM kRZp (k<1<,.p= ,2,. .,m)
Z__ = (V) v~v,V " (cont)

Similar expressions can be written also for the criterion
(6.17). Let us consider the right-hand side of the first equation
of system of equations (6.22). After necessary transformations,
we will have

M[ (V)]. a.+ aiM [v+ , a,1M [vvil+
1=1 i, j-1

(1< j)

- Y a [,,,Mv[vvj± a, PM[v,v vy p.
,j,' l i, j, v,p=!

(i <j(v)

Analogous relations can be written for the right-hand sides
of the remainingequations of system (6.24). From the last
expression there follows an obvious conclusion. The right-hand
sides of system of equations (6.22) are linear functions of
the unknown coefficients of polynomial (6.1) and the statistical
characteristics of the factors.

We introduc.e the vectors

Z = Zo: Z(' (1= 1, 2,..., min); Z ( 21= 1, 2,..., m);...}

A = ao; a, (1= 1, 2,..., m); a, (k 2 = 1, 2,..., m);. ..
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ard the block matrix C of the statistical characteristics of the /219
element of vector V, of the form

C1  C i. C13  C14

C- t C-1 - C2 , C ...

SC 3 C 3 3 C 1  ..

-. --- -I - .--

C- I C42 C-3 C-44

where c, _ C12  __ , =(A/ [vi); 13 C31 (M [vy,]); C14 = (M ]iVjVMC2 = (M ffviJ K
and so on.

Then system of equations (6.11) can be written in matrical
form

Z=CA (6.28)

fromiwhence we can find the vector

A=C -'Z,

-l
where C is the matrix that is the reciprocal of matrix C.

We note one feature of matrix C. By virtue of the above-
made assumptions on the statistical characteristics of the factors,
the matrix includes blocks of zero matrices (M[Vi]),j'(M[vivjv1 ]),

(Ml IIkV,]) and so on, therefore it can be represented in the

form

i c;4 o cs, . .I

-- --- ---------- -----

- -- --.--

A C - -
--- 2 - - - -

-1

-- -- -- -- -- -

Denoting the matrix C by D, and its blocks by dij we can

represent it in the form
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d, '0 d,, 0 ..
------- -~~~'----- -- --- -- --- -- --

d 0 d 0 d4 ...
---------------

D d-1 3 0 ...

0 d,,l , 0 di

which repeats the form of matrix C.

Computing the matrix D in general form for any degree of /220
the polynomial does not appear possible; however, from analyzing
its form we can make conclusions that are quite important compu-
tationally speaking.

First of all, when using the Frobenius algorithms /127 for
computing the matrix D = C- 1, we can organize the procedure of the
successive inversion of the matrix consisting of four blocks.

Thus, for polynomials of the first degree we will have

[1 0

For polynomials of the second degree, we can use the matrix

For polynomials of the third degree we will have

C,2  C.
C3 =.

and so on.

The importance of this conclusion follows fro the fact that
when the Frobenius algorithms are used in computing the reciprocal
matrix by partitioning it into blocks of smaller order, we must
compute a matrix that is the reciprocal of the matrix standing in
one of the blocks. Using as such a matrix the one standing in

209



block (1, 1), we can easily circumvent the process of computing
the reciprocal matrix, except for the case of a polynomial of
first degree. Actually, this is so by virtue of the absence of
the property of complete invariance 1.of the numerical values of
the coefficient with respect to. the degree of the approximating
polynomial.

Secondly, we note that the property of partial invariance .
of some of the coefficients of the approximating polynomials
whose degrees (of the polynomials) differ from unity (Table 6.3).

In Table 6.3, the identical number "asterisk" denotes the
coefficients of the approximating polynomials that do not change
in value when the degree of the polynomial is raised by one.
The property of partial invariance of the coefficients of the
approximating polynomials can be successfully used in computing
the analytic expressions associating the coefficient of the
approximating polynomials, the elements of the vector V, and
the statistical characteristics of the vectors.

Table 6.3 /221

Coeff Degree. of aolynomial I

ao* * ** ** ****

ai jkl -
aljl* ... * *** " * *

aljkl - *** *

Let us dwell further on deriving working formulas of this
relationship. For the moment we will assume that the elements
of vector Z are known. We will dwell below on the physical meaning
of the elements of vector Z and the algorithms of their computation.

6.3. Constructing Polynomials of First, Second, and Third Degrees
in Stochastic Experiment Planning

The aim of this section is to find an explicit relationship
between the elements. of vector A (see(.6.28:)), the elements of
vector Z, and the statistical characteristics of the factors.
When solving this problem for a first-degree polynomial

2= ao+0aiJ (6.29)
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we must use the first two equations of system (6.22). We will have

Z= A'[ip(V),

ZI'= M[~(V)v, (1= 1,2,...,m) (6.30)

After polynomial (6.29) is substituted into expressions (6.30)
and the transformations are carried out, we will have the following
system of algebraic equations:

m

Zo = ao + aM [,v,
i=1

m

Z a) =aoM , + V aM [vvj] (1= 1,2,...,m)
I=1

or

ZO = 10,

Z') = a,M [v (1 1,2,...,m), (6.31)

from whence we get expressions for computing the coefficients: /222

ao = Z, (6.32)

at= 1  ( = 1,2,...,m).
.. M V:] (6.33)

Thus, the problem of constructing first-degree polynomials
has been solved. The coefficients a , a1 (1 = 1, 2, ... , m)

are expressed in terms of the elements of vector Z by the fairly
simple Eqs. (6.32) and (6.33).

To construct the second-degree polynomial

m m= Y ao, + I auVv-
=1 a , ,=1 (6..3L4)

(i j)

we must use the first three equations of system (6.22):

Z. . M V) vJ (1 = 1,2, ...,m);

Z= Mp(V),vkVj (kl<I= 1,2,...,m). (6.35)
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Substituting polynomial (6.34) into Eqs. (6.35) and carrying
out all the necessary transformations, we can write

mn m

Zo= ao + , M [v, + I a,,M [v,vl;
- i. J=1

+m mn
Z = aoM [vtj - aM [v,vj + a,,M [vtv v,] (= 1, 2, ... ,m),

I=1 1 f=1l

Z(' = aoM [vvl + 3 atM [kvkIVI + 2f a 1M [vAvLvv]]
1=1 i,J-=1

(I j)

or

Zo = ao + a,,M [v1];
L=1

ZI = aM [v] (1= 1,2,...,m);

SZ? = aoM [VkvI] + . aM [VkVIViVj] (k<l = 1,2, ... ,m).

(i"<) (6.36)

From system of equations (6.36) we single out the second
equation (which deals with the invariance of the coefficients
al (1 = 1, 2, ... , m) for the second degree of the polynomial).

The first and second equations can be represented in matrical
form (6.28), by introducing the notation

C = ------ - ------ , /223

where r _ __ m= 1
.. c M= M v20...0 M [V 0... .. M v2] ,

Irm m--1 I

Al [v .. o [~M M [2] 0 ... o ... M [v]1M [v,]

o IM[vl M ... O 0 0 ... O 0...

o 0 .. v. r]M 0 0 0.. O0... O
- - - - - - - - - -' 0 ... ... [

1 0]/ ... O . 0 M o o... O ..

0 0 0 0 0 ... o ...

0 ... , ... ... ...

Al V 0 M. 0 . 000 Vll

212



To invert matrix C, we use the Frobenius algorithm for the /224
inversion of a block matrix:

C1l --I C1 - lCl2H ,12 1 I C-l C12D - _ -.---.-------- ----- _
\ 12 11 H-1

where H = c 22 - c* c, 'c, 2 .

Since Icj' ---1, , we get the following working formulas:

H = C2 2 - C C 1 2

D ----------------------- --. .. ... ... .. .
- - H-1

H-. ' H -. (6.37)

We present the necessary transformations.

Since

C12C 12  =

nm m-1 I

(M []) 0 [V... 0 M[ VlM[ I 0 ... 0 M... M[V ,M

j o ... i (M o ... "- [ MmIn

0 0 . 0 0 .. 0 0

0 0 ... 0 0 ... .. 0n i2] 0 ... 0 2 ] .0 (M[)2

then the matrix H is a diagonal matrix of the form

H= diag (M [vJ - (M [v0.) 2, M [v0v ..
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The matrix that is the reciprocal of H obviously is of the form

If- = diag A ___

- . .,
. . .. . . . -.. .. -- (6 .3 8 )

Using Eqs. (6.37) and (6.38), we can easily get /225

( -M [v]d*= M '](M[vfJ) "

... o -,a[] o
M [V - (M [V2 )2

S...-A[v
0 [4 ]-(M [V2])2 (6.39)

Using Eqs. (6.39) and.matrix (6.37), let us write out the
working formulas for computing the coefficients of regression
a and a. .j(i i==1, .m)i

ao= 1+ A Zo o * (6.40)
1 l 1=1

z2

M [VM - <j= 1,2, ...,m; (6.41)
a ,= (6.42)

where

,- M [V] -- (M [V3])2 (i = 1, 2, ..., (6.43)

Based on these Eqs. (6.40), (6.33), (6.41), and (6.42), we
can write out theworking formulas for computing the coefficients
of the second-degree approximating polynomial:

I 1=(M ) 1

a=(i 1,2, 6.44)m),
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]1 [ , i <j= , 2,...,m;
S/ I . . (6.44)

.. (cont)

Of interest is the case when the statistical characteristics /2.26
of the factors are equal to each other. With!M [V-= Ml[v2k(i=1,2,...,ml
Eqs. (6.44) become

ao M I m(M v2)2 Z M v2l Z)

i=1

Z!1)

a [vi (i , 2,..., i);

(M [v) , i<j= 1,2,..., m;

z '- M [v2] zo

(6.45)

Here Eq. (6.43) is of the form

.. .= M [V41 - (M IV*-')2.

To construct the third-degree polynomial

? = ao + aC, + avv,j + aij6evlvv
=, I,=. t, =1 (6.46)

(i<j) ( < ja)

we must take four equations of system (6.22):

ZI'= M[(V) v, (1= 1, 2,..2., m),

Zk' = M[(V) vkv, (k< l= 1, 2,..., nm),

Za=M M[ ()v,] (k.1-<=l1 2,..., m).
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Since the first and third equations of this system written
above were used in setting up the secondLdegree polynomial (6.34)
and enables us to determine the coefficients a and a. .(ij=1, 2,..., n),

to get the working, formulas for the coefficients a (i=1, 2,... m),f

a (isj~;k-=-, 2,.., m)] we muist use the second and fourth equations

of this system (6.22).

Let us write out the second and fourth equations of the /227
system

m

Z_=aM N[V+i] + a,kM IVIViVVk] (I = 1, 2, ... , m);
i, =j, 1=
(1< j<k)

n m

Zl) = a,M [vv.,~,v] + ai ,M [vjv.6v X
1=' , kjk=

(i<j<k)

X vjvk] (1 v<a= 1, 2, ... ,m).

We can represent the resulting system of equations for con-
venience of computation in the expanded form:

ZPV)M .Z = a M [v,] + a,M [v] ±

j=1

z(3 = aM [V4 a,,.V[v,]+

+ m ajM [vJ M [v J (i= 1, 2,..., m); (6.48)j=1

Z = aM [v] [v + a1,,M [,] M [vl + a M [vJ] M [vl f

' a .M [ [] [ v] (i = ,2, ..., m);
k=I (6.49)

Z- = a,j3I[vi]M [v l [v ] (i <j<l= 1,2,...,m); (6.50)
Z) = a;M [v] M [v ] +- ajM [v4] M [v2] + ajjM [v] MA [v] --

k=l

(k ij)
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From Eq. (6:.47) let-us determine the expression for the
coefficientra, (i 1, 2, ... , m):

S- a,,,A4 [vI I- " (,AM [vqj M [V'l

M ! (6.52)

and let us substitute it into Eq. (6.48). We get /228

z : [ 2 M a,, { (M [)2
M [[V4,- [ - A [,]-

I: M[ [azM (j - aiM [v (1 = 1,2,..., m),
( j 1)

whence we will have the expression for computing the coefficients
a...

az Z ()M [V] -. M[] = 1,2, . m),a 1 2 = , "" ' (6.53)

where

-= M [v" 1 Mv]-(M [ 1)-  (6.54)
Substituting Eqs. (6.52) into Eq. (6.49), after uncomplicated

transformations we will have the expressions for determining the
coefficients a.. j :

113

iai =  M <-j(i~j=l,2,. m). (6.55)

Using algorithms (6.53) and (6.55) and Eq. (6.52), we get
the working formula for computing the coefficients

ZMAO Z( )v
a 1 - --

1 M [V2]Zi)M~ m M [,,f- ,= (i = 1,2,..., ),
_ ,1 (6.56)

where

_ M [V] M V21] (M ____

3 &I i- ~---~-
2 Am,

(=) (6.57)
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And, finally, from Eq. (6.50) it follows that

azit -I . (i<J < 1 = 1,2, ... , m)_

Based on the resulting Eqs. (6.40), (6.56), (6.41), (6.42),
(6.43), (6.55), and (6.58) we can write out working formulas for
computing the coefficients of the approximating polynomial of /229
third degree:

ao + (M v ) M[V] ,;

a,; =
,=1 i=12 . ;

Z 2 M [vo

i = 1,2,..., m;

a,= M Z(i= 1,2,..., );

2

al(i M V , (I< j = 1,2,..., m);

Z(3 )

SM [V (6.59)

For equal statistical characteristics of the factors, Eqs.
(6.59) become as follows for the coefficients of the third-degree
polynomial:

1=1

a, 2 Zj (1 1,2,..., m)

(j I)

za (t<j= 1,2,...,n m);
z -M [02] ZO

i , ( j= 1,2,..., m); (6.60)
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S (i= 1,2,..., min);

Z() - M 2] z(1)

A , (i < j= 1,2,..., m);

Z(l)_ (i< j<l= 1,2,. m). (6.60)
(M IV"l) . (cont)

Here Eqs. (6.54) and (6.57) become: /230

A M[VG M [v2I - (M Iv'ml)2

A2  [vAl),. (6.61)

Thus, for polynomials of the first (6.29), second (6.34),
and third (6.44) degrees, we have obtained working formulas for
computing the coefficients that relate elements of the vector V
and the statistical characteristics of the vectors. Working
formula (6.59) are considerably simplified for the case of equal
statistical characteristics of factors, as follows from Eqs. (6.60).

Thus, we have obtained working formulas for computing the
coefficients of the third-degree approximating polynomials. They
are quit'e simple, especially for identical statistical charac-
teristics of the factors.

The case of polynomials of higher degree is also of interest
for practice, however the cumbersomeness of this procedure does
not enable us to derive the corresponding working formulas for
polynomials of degree higher than the third. Of the stochastic
schemes of experiment planning are the set QV, we can single out
two schemes that satisfy the assumptions made at the beginning of
this chapter:

the scheme with normal distribution of experiments on the
set PV; and

the scheme with uniform Idistribution of experiments on the
set E2VV,

Both schemes can be used in practical calculations, therefore,
by using the above-presented formulas for the general case of
stochastic experiment planning, we can derive working formulas
for computing the coefficients of the approximating polynomials
for the schemes of normal and uniform experiment planning on the
specified set QV"
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6.4. Precision of Approximation in- 'St'ochastic Experiment Planning

Above we obtained working formulas for computing the coeffi-
cients of approximating polynomial (6.1). that relate the statistical
characteristics of factors to the elements of vector Z. Let us
find the error of the stochastic approximation for a specified
distribution of the probability density of factors. We can write
the expression in the form

J.= M (V)I-2M (V)? (V) + M"V) (6.62)

for the criterion (6.15).after transformations.

Let us obtain working formulas for computing the criterion /231
(6.62) in particular cases. For the first-degree polynomial
(6.29),Eq. (6.62) becomes

J) = M I[ 2 (V)j - 2aoZ o -

-2 z aiZ'+a + aM [v .

i=1 i(6.63)

Substituting Eqs. (6.32) and (6.33) for the coefficients a
O

and ai into Eq. (6.100), we will have

J4) =M I I?2 (V)J -- )2 -

(6.64)

For second-degree polynomial (6.34), Eq. (6.62) can be
represented in the form

J ' = M ' (V) - 2aoo0 - 2 a,ZI' -
i=l

iL=l i=1 1=1

m m
± aM [v + aM [V] M [V]

1,j=1 /
(i < j)

(6.65)
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Substituting into Eq. (6.65) Eqs,. (6.44), for the coefficients
ao , a., and a. .(ii=1,2, . m) and carrying out the transformations,

we get

J(2) = M [ M(V)[v] M [(_ ,j,

(I < j)

- 2aZ, + au + [2aoaM [va M [+ a -
i-l

(M j) f .,;M

which can lead to the form /232

_ ,(z q2 m (z(2 )2j 2
, = M [?2- (V)] (z )2  

if )_z______
[v] M V] M [V2]

( < j)
_______+ (M 121\2

r=1

,= (6.66)

For the normalized vector V, Eq. (6.66) is simplified and
is of the form

=1 - ( " I ( Z) 2
A4 [vV2 (MM[)(2])2

+ [ Z! 2Zo [ (Z - ZJ.

2o vlm (M

<j) j(6.67)

We can similarly obtain expressions for computing the error
of the stochastic approximation for higher degrees of the approxi-
mating polynomial.
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6.5. Computati-o of Estimates of Moments Z

In the stochastic approximation of the function P (V) with
a polynomial of the form (6.1), the statistical characteristics
of the function

Zi' - M [? (V)vil, Z~i) = M [? (V) v j],.-. (6 )

were introduced into consideration.

The exact computation of the moments Zo,Z~',Z d,..fjor a non-

linea, model of the process having the form (5.2) is impossible
in practice. Therefore it appears useful to employ estimates of
the moments Z computed with approximate methods of statistical
analysis of nonlinear systems, for example, the method of statis-
tical tests.

If the sequence (5.78) is constructed for a random vector
and if for it the sequence of functions

'", , . ?,, (6.69)

is computed, the computation of the estimates of moments (6.68) /233
can be done by employing formulas from the method of statistical
tests:

() N

j1=1

(6.68) and the initial moment .[_(V) of the function '(V) can

\ / (V) = - [ = ¢[ V.
M.,

make use of the same sequences (5.78) and (670)

Similar formulas can be written for computing the estimates
of the introduced moments of higher degree by using the method of
statistical tests.

We can easily see that computing the estimates of moment
(6.68) and the initial moment 'M[(p(_V]i of the function 0'(V) can

make use of the same sequences (5.78) and (6.69).

Here the sequence (5.78) can be constructed in digital
computers employing standard programs of random numbers with
assigned density of the probability distribution.
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Example 6.1.. As an illustration of the method of stochastic

approximation, let. us look at an. example of investigating the

effect of random perturbations (elements of a canonical expansion

of 'the random components oft air ,density) in a process of the descent

made by a flight vehicle in the-dense atmospheric layers of the

earth described by nonlinear equations from /137:

= - k,p (h) V 2- k sn 0 (k, = 1,75-10-3)

S- - cos 0 (k2 = 0,028);

x = cos ; y= V sin ; h = y - ;

p (h) po(h) p (h) i (h).

The symbols used in-setting up_ jEq. (6.1.1) are given in example

(5.1).

Let us consider as the perturbation the normalized random

component of the deviation of atmospheric density from the standard

P (h), which we specify in the form of a segment of 
a Fourier

series (see Chapter Four) with random coefficients

Ae (h) -- 21+1v 21 +1 COS (1 + 1) (,h + 12 ,v2 sin (I + 1) whI
i=U

0 = 9.10- 4(

where P (i==l,2.. 14) are weighting coefficients given in Table 6.4.

Table 6.4

n..... I 2 -3 4 5 6 7
. .... . 0.69 0.,16 0,31 0.21 0.19 0.17 0.16

n . . . .. S 9 10 II 12 I:3 I
S. . . . 0.69 0,46 (031 0,21 0,19 0.17 _ 0

The numerical value of the normalizing cofactor 4(h) used /234

in the numerical calculations is given in Table 6.5.

Table 6.5

I n.. 0,5 0 1 2 3 ' 5 7 10
(). 10 ' 4078 3263 2090 1.428 1,019 0,659 0,600 0,610

h . . . 15 20, 25 30 35 40 45 50
.(h) 10' 7915 2010 2703 0,928 0,504 0,509 0,179 0.110
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We will assume that the characteristics of the random
factors are assigned and are equal to:

4v_0 M. ri 0- =-Ifor i = ,

_for i Z j.

The investigation was conducted for the deviation of the
coordinate x of the perturbing motion from the f Ivalue in
unperturbed motion (Ap = 0) at the altitude h = 100 m for the

following initial conditions of the system of equations (6.1.1):
V = 7850 m/c; 0 = -50; Yo = 50 km; and x = 0.

The statistical characteristics of the quantity Ax (h = 100 m)
obtained by the method of statistical tests for N = .150 are equal
to M /Ax/ = 100 m; a2 /x = 6.2.106 m 2 . he numerical values
of the moment of the first Z(1 ) and second Z 2) order computed by
Eq. (6.70) are given in Table 6.6) Also presented there are the

numerical values of the coefficients a , ai, and aii.

Table 6.6

2 1 3 4 8 1 1 11 12 13 14

1 1032 -506 -407 170 -910 -104 -431 745 -260 -8 200 7 -246 244
2 -296 617 396 53 50 -159 4 -130 441 120 83 -11 -75
3 340 225 305 91 290 -137 275 -i5 -149 -30 561 53
4 416 -686 -164 11 38 -328 -77 -152 -25 -150 -29
5 960 179 79 -188 -245 -169 -112 -113 404 202
6 26 432 -112 -60 7 -257 5 -277 -72
7 306 237 190 136 -303 -253 -69 -128
8 204 -79 -176 -32 246 -139 -76
9- 234 421 -110 397 81 71

10 566 -73 52 -99 65
11 .- 12 -115 -170 -71
12 236 168 -75
13 118 -68
14 -100

ai1  466 -198 120 158 430 -37 103 52 -167 233 -56 68 -109 -100
a1  21831-714 10161 423 305 142 -174 -322 -107 -15 -261 -19 100 -48

Table 6.1 shows the convergence of the coefficients ai (i =

= 1i, 2, ... , m) as a function of the number N defining the number
of the sequence (5.78).

From an analysis of the results. it follows that the conver-
gence of the method of statistical tests, when estimates of the
vector Z are being determined, is quite high for the essential
random factors. Estimates of the vector Z converge somewhat
worse for factors that have little effect on the scatter of the
phase coordinate Ax.
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The calculations were. made on a M-220 digital computer and
afford the conclusions that individual random factors affect. the
scatter of the coordinate Ax and the necessity of including them
when carrying out investigations for a given class of processes.
Table 6.7 gives the numerical values of the 'contributions made by
the first four linear.terms of the expansion, along with the
numerical value of the dispersion of coordinate Ax in absolute
values and in percentages.

The data of Tables /235
6.6 and 6.7 show that

--- the first four random
factors in a linear model
determine with a precision
up to 0.5 percent the

--a dispersion of the coor-
/- - dinate Ax. The remaining

random factors have virtually
no affect on the descent of
the flight vehicle described

-.a, by Eqs. (6.1.1).
200-

-ag

I - -- - - -- a

124 125 126 127 128 129 130 \ 131 N

Fig. 6.1. Variation of coordinates in
ai(t). (i = 1, 2, ..., 14) as a function

of the numbers of sample elements.

Table 6.7
S2 3 4

au 10'  4,75 0.49 1,09 0.176 .

2 lax] % 76.6 7.9 17,6 2,8 ,
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CHAPTER SEVEN /236

NUMERICAL OPTIMIZATION OF CONTROL ALGORITHMS
FOR FLIGHT VEHICLE MOTION

7.1. Optimization of Processesoof Controlling Flight Vehicle Motion

The above-examined problems of the scatter of kinematic
parameters of the trajectories of flight vehicles in the dense
atmospheric layers are a constituent part of processes in the
statistical optimization of control parameters of their motion.

Examples 5.1 and 5.2 examined linear control algorithms
providing compensation for deviations of kinematic parameters
of flight vehicle motion from their reference values. In
principle, the algorithms can also be nonlinear functions of
the mismatches of phase coordinates X. The problem of synthe
sizing the structure and the parameters of the algorithm of the
AU(X) can be formulated as a variational problem /73, 59, 747,
of minimizing some specified quality criterion /19, 32, 33, T3,
67, 79/ when there are relations in the form of differential
equations (5.2).

However, in most practical problems of the control of flight
vehicle motion it is not possible to solve the problem of synthe-
sizing the control algorithms (the problem of determining the
optimal structure and parameters of control actions) by employing
necessary and sufficient conditions for the optimality of func-
tionals /74/ owing to the complexity or cumbersomeness of the
known formalizations. Usually, by employing formalizations of
variational methods we can only indicate the class of functions
td which the structure of optimal contrbl belongs.

Among the practical problems of control, by virtue of the
specificity of control processes and actuating devices of control
systems, or the state of technology in realizing optimal controls,
the class of functions in which one seeks the optimal control is
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restricted. Therefore, one widely used approach to setting up
control algorithms that are sati;sfactory in practice is the
approach based on direct methods: of solution /7T3, 59/7. Essentially,
the latter amounts: to the following. A class of unknown functions /237
(dependences of control actions on mismatches of process phase
states) wholly defined by a finite set .of parameters (coefficients)
is specified, and the numerical values of the parameters (coeffi-
cients) are calculated from the condition that an . extremal
value of -the criterion of process control is ensured on an
admissible set of the parameters sought for. Mathematically,
these problems are formulated thusly.

Problem 7.1. It is required to find an extremum (for sake
of definiteness, we will assume the minimum) of the quality
criterion

I-= I(k,, k ,...,_ k) (7.1)

on an open set QK of parameters k1 , k 2 , ... , ks, if the quality

criterion (7.1) is computed for solutions to the system of
differential equations

x = fA (xI, x2,. .. , u, I AU. . .., AUr, A, , )
x1 (to) x,, (i= 1,2,...,n). (7.2)

and if the controls.Aui, Ad 2,.-.. Aur are defined by the functions:

,a = a- (Ax,( t ), kt; i = i 2,..., n; 1= 1,2,.., s). (7.3)

In the formulated problem 7.1, the quality criterion is
usually specified in the form

I(k, k:,.., k,) = 1'[ (Ax,(t), Au,, k,; i= 1,2,...,
j = 1,2,..., r; 1 = 1,2,..., s],

(7.4)

since the solutions to Eqs. (7.2) are stochastic by virtue of the
randomness of perturbations E,(i), 2 (t), ... , m(t)

Problem 7.2. It is required to find the extremum of the
quality criterion (7.41) on a closed set QK of parameters kl,

k2 , ... , ks if the quality criterion is computed by Eq. (7.4)

for solutions to the system of nonlinear differential equations
(7.2), and if the controls are specified in the form (7.3).
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The set QK is usually assigned as the intersection of two

sets Q and defined as follows. The set ") is a set of para-

meters kl, k2, ... , ksdefined by constraints of the form:

K K, (7.5)

where K = {k, k2, ... , k is the s-dimensional vector of the (opti-
v A

mized) parameters sought for; and.K, K are vectors of.the numerical
values defining the range of variation of the parameters being
optimized.

The set 9)/ is specified by constraints of the form:

Q k,,, k,) < Q ,(7.6)

where QO is the 1-dimensional vector of the assigned numerical
value; Q is the 1-dimensional vector of the assigned functions
of\the parameters being optimized.

The functions Q (kl; 1 = 1, 2, ..., s) are computed for the /238

solutions, to the system of differential equations (7.2) and are
specified in the form

Q(K) = M [G (Axi, Auj, kj), i = 1,2,..., i; j= 1, 2,..., r;

l= 1,2,...,s].

(7.7)

Thus, in problems of optimizing control systems of dynamic
processes, the quality criterion 7.4) and the constraint (7.7)
are computed in the general case for solutions of nonlinear sto-
chastic differential equations, which naturally leads to the
implicit dependence of the quality criterion (7.1) and the con-
straints (7.6) on the parameters (of vector K) being optimized.

Therefore it does not appear possible in advance to indicate
or determine the class of functions to which these functions I(K)
and Q(K) belong. One can only note that problem '7.1), is in the
class of problems of searching for an extremum of an implicit
function of many variables. Problem 7.2 is in the class of prob-
lems of nonlinear programming with a nonlinear dependence on the
parameters being optimized of both the control criterion 7.1
as well as of constraints. (7.6).

228



7.2. Methods of Searching for Extremum of Functions of Many

Variables

There are a considerable number of methods, algorithms, and

procedures for solving the problem of searching for 
an extremum

of functions of many variables both with /31/ and without allowance

for constraints /l1, 717. Most of these are based on certain

hypotheses about the structure of function I(K). One of the

widely used is the hypothesis that states that the function being

optimized is unimodal on the set of parameters K. Essentially,

the assumption that the quality criterion I(K) is unimodal cannot

be validated in problems 7.1 and 7.2 without a preliminary study

of the function being optimized by computing the quality criterion

at a number of points on the set K" The process of computing

the quality criterion for a specified numerical value 
of vector K

will be referred to as an experiment.

The methods of searching for an extremum of the quality

criterion I(K) must take into account the absence of a priori

information on the structure function under study, its unimodality,

uniqueness, or polyextremality, and so on. Also, in algorithms

for optimizing the quality criterion I(K), no small role is played

by methods of computing the possible errors in carrying 
out the

experiment (in computing the quality criterion by analytic methods

or by numerical methods employing analog or digital computers).

Summing up the material on searching for an extremum of

functions of many-variables, we can present a classification,

given in Fig. 7.1, that is convenient in setting forth the methods

and algorithms of numerical optimization. Under this proposed

classification, all methods of searching for an extremum of func- /239

tions of many variables can be divided into three large groups:

1) methods of random search;

2) determinate iterative methods of search; and

3) combined methods merging determinate methods with random

search.

As applied to the present class of problems under study, methods

of random search ar'e most preferable by virtue of the absence of

a priori information about tle function being optimized. However,

the fakrly large number of experiments by which the extremum of

the function optimized is attained casts doubt on the applicability

of these methods in practical problems of optimizing control

processes.
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Determinate iterative methods permit reducing to the minimum
the number of experiments when searching for an extremum of a
specified function. The absence of a priori information about
the mono-extrei'ality of the function und@r study does not enable
us to state that the optimum found is absolute.

The distinguishing feature of determinate iterative methods
is the fact that in searching for a local extremum of function
I(K), one selects the initial point K = K(O) in the space of
parameters 0 K. Different methods of studying the behavior of

the function I(K) in the neighborhood of point K = K ( ) and the
depth of this search also essentially underly all methods and
algorithms of determinate search. These features also are the
basis for the classification of determinate methods (Fig. 7.1).

To clarify the problem of the uniqueness of the extremum
of a function I(K) on the set of parameters Q K found by means

of determinate methods of search, we can useItwo types of algo-
rithms. One is absociated with the determinate subdiviaion of
the set QK into the subsets 3(J), (j = 1, 2, ... , N) belonging

to the set Q K' and the search of the extremum in each of the sub-

sets. The second approach can be associated with combining the

methods of determinate search and random selection of the initial

point K = K( 0 ) , with the setting up of bounds to the subset of

parameters j) under study in order to exclude it from further
investigation.

Among the determinate methods of search we can single out
four groups of methods differing in the depth of the search of
the structure of the quality criterion I(K):

screening methods;

Gauss-Seidel method;

methods based on the local representation of the quality
criterion by approximating hypersurfaces of specified order; and

methods associated with approximating the quality criterion
on a preselected subset of parameters being optimized by approxi-
mating hypersurfaces of specified order.

Screening methods involve (singling out on a set 12K the /241

parameters of a series of points at which an experiment is con-
ducted. Comparing the numerical values of the quality criterion
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Fig. 7.1. Classification of methods of searching for extremum functions
of many variables.
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[Key to Fig. 7.1 on preceding page]-- I

1. Methods of searching for extremum of functions of many
variables

2. Random search

3. Determinate methods of search

4. Combination methods of search

5. Method of screening

6. Gauss-Seidel method

7. Methods of local approximation

8. Method of approximating polynomials

9. Determinate orientation with random search along it

10. Methods of search for extremum of function of one variable

11. Algorithms without "memory"

12. Algorithms with "memory

13. Random orientation with determinate search along it

14. Methods based on constructing a hyperplane

15. Methods based on constructing second-order hypersurfaces

16. Methods based on constructing hypersurfaces of order higher
than two

17. Random search with successive approximation 8,f results by
hypersurfaces

18. Method of steepest descent

19. Method of gradient

20. Method of differential equations
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I(K) in each of the experiments makes it possible to single out
at least a subset of parameters where the extremum sought for is
found. This statement is evidently valid for the class of uni-
modal functions. The effectiveness of screening methods for the
case of an arbitrary class of a function being optimized is
considerably reduced, since in this case we can significantly
increase the number of nodes on the subset QK of parameters at

which it is necessary to conduct an experiment. Since the bounds
of the set K in problem 7.1 usually are not exactly defined,

screening methods involve a considerable number of experiments
and their present application is scarcely advisable. It should
be noted that in some'polyextremal problems in which extrema of
identical values of I(K) -are present, screening methods can be
the only methods of determining all extrema.

The Gauss-S'idel method involves investigating the quality
criterion in the plane of a single parameter ki for fixed numerical

values of the remaining parameters of the elements of vector K.
The advantage of the Gauss-Sleidel method over the screening methods
lies in the investigation of the structure of the quality criterion
in the plane of a single parametergsince it reduces the process of
multiparametric optimization to uniparametric, that is, to searching
for an extremum of the function of a single variable, and involves
two algorithms.

The first of these requires knowledge of the range of variation
offeach parameter being optimized, that is, the bounds of set o').
Here, for a specified set 20), we investigate by means of the

screening method a cross section of the quality criterion: we
find that the nature of the function in this cross section,
determine the number of extrema, and so on. In the second case,

(0)we use search algorithms from the initial point k . A specific

local extremum is employed as a first approximation in the para-
meter k. when investigating the function for the other parameters.

1

Usually, the Gauss-Sleidel method is used when there is a small
number of parameters being optimized (s < 5). The applicability
of the Gauss-Seidel method for a larger number of parameters
involves a considerable number of experiments and when the cost
of each experiment is high can scarcely be justified.

Considerable acceptance as search methods has been gained
by algorithms involving a local approximation of the function
under study with hypersurfaces of specified order in a small
neighborhood selected as the initial approximation of the vector

K = K(). Essentially, this group of methods and algorithms
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involves studying the structure of the quality criterion only in
(0)the E-neighborhood of the initial approximation of vector K

In turn, the difference between algorithms and method involving /242
local approximation of the quality criterion lies in the depth
to which the behavior of the quality criterion is studied in the
E-neighborhood of the space of parameters of K(O). We can single

out three groups of algorithms that share commongapproaches to
the search process:

1) methods of constructing a hyperplane in the space of

parameters! UK passing through the point K (0 )

2) methods of constructing a hypersurface of second order

passing through the point K (0 ) ; and

3) methods of constructing a hypersurface higher than the

second order passing through the point K (0 )

The expediency of this subdivision involves algorithmsfor
employing the information obtained on the behavior of the optimized
function in the neighborhood of point K(O). This group of methods
shares the fact that at the point K K(O) a Taylor series of the
form

I )(K()) 4+K) -(K(K() )A k+

-9 a i (K( ))  X
2 , d Ok R ..... . .Ok

X AkAk...Aki,

(7.8)

where

Aki= k -k7k( ))

can be constructed.

Obviously, constructing the series (7.8) when it has a fairly
large number of terms involves a large number of experiments or
cumbersome calculations in computing the partial derivatives:

Ojk' OTkidkj' Ok1OkiOk, 'j (..<.. .. F = ". s).
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Use of the linear portion of series (7.8) in the form

I(K''+ A,) = (K) ' -L (K( 0 ) A, k
I i -__k- (7.9)

enables us to establish only the direction in the space of para-
meters 2K in which the quality criterion I(K) is decreased.
To search for an extremum in this direction we can use familiar
methods and algorithms (Fig. 7.2):

the method of steepest descent; and

the method of principal components of the gradient, and other
methods that reduce the problem of the multiparametric approach
to a problem of uniparametric search for an extremum of functions
along the direction of the gradient of the quality criterion at

%K(0)
at the point K = K .

Use of the quadratic model /36/ for the criterion, when there /244
are three terms in the series (778T:

S

1 = 1("() ( I k"0' ) (k - k').

i, - 1- k)- k)
i - '(7.10)

solves the problem of searching for the gradient and determining
the size of the step in the parameter space.

Necessary conditions for the minimum of Eq. (7.10) yield a
system of linear algebraic equations for determining the magnitude
of the new approximation of vector K in the parameter space UK

.. (K )) + ' - (K ) ") o.0OJ= kk (7.11)

And, finally, nonlinear models of the quality criterion in
which the number of terms in the series (7.8) is larger than three
yield a fuller representation of the behavior of function I(K)

in the e-neighborhood of the point K = KX(), however their use
does not afford as effective an algorithm for searching for the
new approximation to the vector K in the parameter space QK as

the second-degree expansion (7.10). To search for the vector of
parameters in the next approximation it is required to use either
the method of differential equations, or methods of searching for
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Fig. 7.2. Classification of methods of searching for extremum of functions
of a single variable.

/Key on following page./
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/Key to Fig. 7.2 on preceding page./

1.- Methods) of search for extremum of functions of one variable

2. Random search

3. Determinate methods

4. Method of purposeful screening

5. Methods of analyzing segments of indeterminacies

6. Methods of quadratic polynomials

7. Methods of approximating functions by curves with order higher
than two

8. Method of dichotomy

9. Method of golden mean

10. Method of Fibonnacdi

11. Newton's method

12. Method of parabolas

13. Method of quadratic approximation

14. Methdd of differential equations

an extremum of a function of parameters being optimized, assigned
in explicit form. The method of differential equations essentially
is a method of steepest descent with a small step and consists of
searching for a steady function described by the differential
equations

0dki 01

k (7.12)

where I is the model of the quality criterion and X. are the

coefficients of proportionality.

Solution of equation (7.12) on a digital computer does not
pose serious difficulties, therefore in principle nonlinear models
higher than the second degree can be used in searching for an
extremum of a function of many variables if their construction is
possible.

237



We must at once note that success in the procedure of searching
for an extremum of functions of many variables using local nonlinear
models depends to a large extent on the cleanness with which experi-
ments are carried out in determining the partial derivatives of the
expansion (7.8).

A second feature in the application of methods of local approxi-
mation is the requirement thattthe function I(K) be unimodal, since
the presence even of minor high-frequency oscillatory components /245
in the function being optimized leads to instability of the
extremum search algorithm.

We can sidestep the disadvantages of search methods involving
local approximation of a function by employing a group of methods
involving approximation of the function I(K) on a specified set
w(j)

A difference between the methods of searching involving approxi-

mating the criterion on a set ( from the method of searching
involving local approximation of the criterion in the E-neighborhood

of the point K( 0 ) is the fact that in this case, instead of the(0)
expansion (7.8) of function I(K) in the neighborhood of point K ,
we set up a problem of the optimal approximation of function I(K)
by a polynomial of specified degree

S S

I= ao+ aAki+ a,. Ak.Ak
1=1 I.i=1 (7.13)

from the condition that the smallest value is ensured, for example,
the integral quadratic error of a similar representation

J= 2 (AK) dAK,

where

E(AK)=I(AK)- (AK). (7.15)

As to the remaining features, methods of solving the problem
of searching for an extremum of a function I(K) based on its model

I(K) are analogous to those presented above when local approximations
with linear and nonlinear models of the quality criterion are used.

The problem of the necessity of the singling gut methods of
approximating the function I(K) by the polynomial I(K) on the set

w(J) into a separate group of methods can arise. It is difficult
to respond uniquely to this question. On the one hand, computational

238



aspects of this group of methods differ appreciably from the com-
putational aspects of local-approximation methods. In the first
case, in constructing the series (7.8) we can use either functions
of the sensitivity of the quality criterion with respect to the
parameters being optimized [50], or formulas of differences for
approximate computation of partial derivatives. In the second
case, the principal apparatus for constructing the optimizing
polynomials is the method of least squares (integral or pointwise),
solving both the problem of computing the required regression co-
efficients of polynomials (7.13), as well as the problem of
smoothing the "irregularities" of the function I(K).

In addition to this difference, methods of approximating
polynomials enable us to use to its full extrent the "pre-
history" of the extremum search process, which cannot be said of
local-approximation methods. These algorithns cannot be enployed in
local-approximation methods. The differences listed are fairly
essential in order to single out the method of approximating /246
polynomials into a separate group of extremum search methods.

On the other hand, in either case we are dealing with the
approximate representation of the quality criterion by Taylor
series (7.8) or by approximating polynomial (7.13) which do not
differ in form from each other.. This form similarity of repre-
sentation (7.8) and (7.13) differing in content can raise an
objection when the methods of the approximating polynomials
are placed in a separate group of methods. Since the presen-
tation of methods and algorithms under this classification is
more preferable, we can adopt the solution of extending to the
methods of approximating polynomials autonomy in the classifi-
cation of methods of searching for an extremum of functions of
many variables.

7.3. Methods of Computing Partial Derivatives for Statistical
Characteristics of Stochastic Processes

When stochastic processes described by the following nonlinear
equations are optimized:

,i = 1 (x1, ..., x,, t, kl, k1 ,.., k. , VZ t, P ,..., m),

x, ) = 0  (i= 1,2, .n), f r , T

.. ( 7 ,1 6 ) .....

one of the serious problems of a computational nature is the
problem of computing partial derivatives of Taylor series (7.8)
for the criterion I(K) being optimized.
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Generally quality criteria can be of two types

i.= M [14 (x, T)]. (7.18)

Let us d'etermine the partial derivatives of criteria (7.17)
and (7.18) based on control parameters k 1, k 2  ... ks. We will
have

Il, & OD Oxi d a
Ok, Ox Ok I dt (7.19)

- -F-[ l

1 O1

-- =M ,=, o.---;o;+ o-(1 (1= 1,2...,s') (7.20)

O.id OOkk, Ok

seciond fs order or, a hEr. orde)s or solutonl

\1 ( 1,2,..., n) , 1,2,..., s),i (7.22)

where 0- Ok2Xi are the partial derivatives of the solutions to

nonlinearsstochastic equations (7.16).

To compute the partial derivatives of the first order-0k,]

second order I 'k \ , and higher orders for solutions to nonlinear
equation (7.16), we can make use of the differential equations of_
sensitivity. Thus, the system of differential equations of sensi-)
tivity of first order for Eqs. (7.16) is of the form

-t[ Ok]i oxj Ok oi Oki ,

TI o -'I-t Ok " "" (7.23)
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The second-order partial derivatives for solutions of non-
linear equations can be computed using the following system of
differential equations

d x t) nOfi.j , -f +
j=1

S(, v = 1,2,..., s), (i 1, ... ,n).
=x (7.24)

Systems of differential equations for determining partial
derivatives of higher order can be set up based on an algorithm
that is analogous to the one described above.

Introducing the notation

(1) = Ox~T (i = 1,2,..., n; l= 1,2,..., s);
( ox,(f

, (t) = ~,ok, (p, I = 1,2,..., s; i = 1,2,..., n2),

- (7.25)

systems of equations (7.23) and (7.24) can be represented in the /248
following form:

(t)= a+ (t) i 1,2,..., ), ( = ,2,...,s),
j=1

n n

wit(t) = Y a.wj, + bjewjt"w + '(t) (i = 1,2,..., n;
j=1 p,j=1

, v = 1,2..., s), (7.26)(7.26)

where we use the notation

aij = , bsP = -d-idxxp

l OlOf, 02fi

(7.27)

If the initial systems of equations (7.16) do not depend on
the parameters k1 , k2, ... , ks, the initial conditions of systems

of equations (7.26) are zero:

wI(to) = ,(to)= 0 (i= 1,2,..., n), (1, v= 1,2,..., s).
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Eqs. (7.27) are random functions of the perturbing actions,
therefore systems of equations (7.26) constitute a system of
stochastic equations.

Substituting the notation (7.25) into Eqs. (7.19) - (7.22),
we get

TI n
= M w(t) + O dt (1= 1,2,...,s);

M 0 i I Oki

k M w (T) +- (l= 1,2, ..., s);

Tr n
021, M W 02(1 (, J)

ok,1  = M o xodxr w(t) w (t) + dko +k
i,j=1

II =1 k
wi Oxk

(7.28)

By integrating system of differential equations (7.16) /249
jointly with systems of differential sensitivity equations (7.26)
for the specified realizations of the vector of random factors,
we can obtain the realizations of solutions xi (t, V) and the

1
realizations of sensitivity functions wjI (t, V) and wj. (t, V).

Treating the necessary number of realizations of these func-
tions by one of the methods of the statistical analysis of non-
linear systems of equations, by Eq. (7.28) we can compute the
required partial derivatives of the mathematical expectations
of the function I under study or the integral of it to set up
Taylor series (7.8),

As a whole, use of differential sensitivity equations is
quite an effective procedure, however several difficulties can
crop up in its realization.

First of all, to get the differential sensitivity equations
we must do a great deal of preliminary work. Secondly, differential
sensitivity equations have a high system order.
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Tables 7.1 and 7.2 give the numerical values of the order of
the system Nr for sensitivity models of the first and second
order, respectively, as a function of the order of the initial
system of differential equations "n" and the order "s" of the
vector df the parameters K being optimized.

Table 7.1 Table 7.2
Order of System of Differential Order of System of Differential
Equations for Computing First- Equations for Computing Second-

Order Partial Derivatives Order Partial Derivatives

I _0 1 5 0 2 10 1 15 20

1 2 6 11 16 21 1 4 66 409 1271 2911
5 10 3 55 80 15 5330 2 045 6355 14555

10 20 60 110 160 20 10 40 60 4090 12710 29110
15 30 90 165 240 315 15 60 990 6135 19065 43665
20 40 120 220 320 420 20 80 1 320 8 180 25420 58220

Table 7.3 The numerical values in
Formulas for Calculatin Nthe Tables 7.2 and 7.2 for illus-
Order of Differential Equations tration of the high order of

for Partial Derivatives of the system of differential
Solutions equations were computed by the

formulas given in Table 7.3.
Also presented there is the

d I formula for the computation of
.the order of-the--s-ys-tem-of- /250

Nr I(s + 1) (1" +3s+ 2) n_(2s: +X + 13s +6) -differ-ential equations- -for-
Sn(s+) he third-or-der partial

derivatives.

Naturally, when the initial system has a high order (n > 5)
of Eqs. (7.16) and when there is a considerable order of the vector
of the parameters being optimized (s > 5), the order of the system
of differential sensitivity equations for third-order models is
an impressive figure (Nr > 330). From the foregoing it becomes
obvious that integrating third-order sensitivity equations repre-
sents serious difficulties -ven for modern digital computers.
The situation becomes somewhat better with sensitivity models of
the second order (see Table 7.2). However, even here already when
s > 10 and n > 5, the order of the system of equations that must be
integrated to arrive at sensitivity functions of the first and
second order also exceeds the number Nr = 330.

An applicable order of the system of differential equations
is obtained only for first-order sensitivity models. Therefore
to set up models of the quality criteria of the forms (7.17) and
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(7.18), we can use the linear model of the expansions of solutions
to nonlinear equation (7.16) in a Taylor series in increments 6f
the parameters AkI, .Ak2 .., Ak being optimized:

x (t, K'O' + AK) = x~(t, K 0'° ) + V wI (t, K°o) Ak,

=1 (7.29)

where

Ak = k,-k (V , (= 1,2,..., s)

Substituting the linear model of solution (7.29) into the
expressions for the quality criteria (7.17) and (7.18), we get

1, = M qx, (t, K '") + w '(t, K(O)) Ak, dt
T L =1 ,

1 (7.30)

Using the Taylor series expansion of Eq. (7.30) in increments
of the parameters Akf; (P = 1, 2, ... , s), we can obtain an approxi-

mate expression for Taylor series (7.8).

Example 7.1. To illustrateithe foregoing, let us look at
the process of arriving at expansion (7.8) using a linear model
of solutions for the quality criterion of the form

I, =: M { X* QAx + U*CU dt
_ . n! . .... (7 .3 1 )

when we are dealing with the linear control

U = K*X (K is a column vector). (7.32)

Substituting Eq. (7.32) into criterion (7.31), we get /251

I, = .l X * 7A D dt 3," i, " - (7.33)

where

D= Q+KCK*. ]
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Since
X (, AK) =x (t. K() , ±<0w ) Ak,

K A K(i) + AK,

then we will have

I,=A " {(x (t. K( w (t, K()) AK)* (D() +2AKEK) 4

+ AK C -) (X (t, ")+ u, (I,. XK ) AK)Jdtl].
(7.34)

We can easily see that after all transformations are carried
out, under the sign of the integral we get a fourth-degree poly-
nomial in elements of vector AK. This procedure of setting up
local expansions of mathematical expectations of several functions
4 in a Taylor series has been successfully used in a number of

studies /36, 627 in optimizing linear and nonlinear stochastic
control processes.

The idea of using a linear model of expansions of solutions
to nonlinear equations (7.16) in a Taylor series is quite produc-
tive, since it enables us to compute only the differential sensi-
tivity equations of first-order w (t) niecessary in setting up

the series (7.8), which can'considerably cut down on the volume
of preliminary work in arriving at sensitivity equations (7.26)
and the volume of computations. Let us make an estimate of how
effective this idea is for the case of setting up a quadratic
model of the quality criterion. When Eqs. (7.28) are used, we
must investigate -,-(s+2s+2) equation; in setting up linear model

(7.29), the number of required equations reduces to n (s + 1),
that is, the number of required equations is reduced by a factor

of

However, under this approach the function cF must be a function
higher than the first order in phase coordinates of the process
under study described by Eqs. (7.16).

Above we considered an exact method of computing the partial
derivatives of expansion (7.8). The desired first-order partial
derivatives can be computed also by employing approximate difference
formulas, for example,

I (K(O). hy") Ak ) .. 00)



In the approximate computation of second-order partial /252
derivatives we can use various formulas based on different
experiment planning /142, 447. As an example, let us consider
the case of experiment planning according to the scheme shown
in Fig. 7.3 a. Treatment of the results according to the scheme
gives the following working formulas for computing partial deriva-
tives

Okj 2Ak 1  '

- J (k(o) + A i,) + I (ko) - AT ) - 21 (k(o))
SOk2 2

I (kj") + \i, ko) +. j) - I ( 0 ) - k) +

02/ + l(k °0 ) + Skj)- 31 (k(o))

0kidkj Akl Ak

(i <j = 1,2,..., s).

(7.35)

a b

X i 0 Aki 2Ak- A X

2 akj

Fig. 7.3. Scheme of experiment planning for
determining partial derivatives

At the present time, experiment planning for computing partial
derivatives is carried out before beginning the computation process,
that is, it is carried out rigorously and remains unchanged in th"

process of optimization as a function of the behavior of the func-
tion under study. This is basically caused by the desire to!
perform ) calculations of partial derivatives based on finite
formulas.

On analogy with Fig. 7.3 a, we can also set up other schemes
of experiment planning for computing approximate values of the

partial derivatives of the quality criterion and the constraints.

246



(Fig. 7.3 b). For experiment planning represented in Fig. 7)3 b,
the working formulas for computing partial derivatives of the /253
first and second orders are of the form:

Oki A(.l

021 I (k") + 2A-k) - 21 (klo) + Ai') + i (k(0))

dk2  2Ak 2
) 2k 1

21 (k) + Si1, k0) AT I ) - k +
021 + 2+ii) - I (k 0) + 2Ak)

dOkidk 2Ak) k 2 (i,j= 1,2,..., s).

(7.36)

To solve the problem of computing estimates of partial
derivatives, we can also use methods of optimal experiment
planning /T 2 , 77/ quite well elaborated for solving problems in
multifactor analysis.

The minimum number of experiments needed to compute partial
derivatives of the first and second orders for a quality ciAterion
when difference formulas are used is

Np 2= s. 3s+2
2

and is shown in the second row in Table 7.2.

In each of the experiments we must integrate only the initial
system of differential equations (7.16) by as many times as is
required by the procedure of computing the statistical characteristics
of (7.17) or (7.18). The weak point of the difference scheme of
computing partial derivatives isthe indeterminacy of selecting
the increments of coefficients Ak. of the chosen initial approxi-

1

mation. Here, usually the function

. 1(7.37)

is employed.

Comparing these two approaches to solving the problem of
arriving at local representations of the quality criterion in the

neighborhood of the point K (0 ) in the form of a Taylor series, we
can draw several conclusions.

When we are dealing with small numbers s and n (s, n < 5)
for computing partial derivatives of the first and second orders,
it is best to use the sensitivity equations, since when differential
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sensitivity equations are jointly integrated with the initial
system of equations, owing to the common computational operations
of numerical integration of the differential equations the time
needed to arrive at the partial derivatives is less than when
difference methods are used in solving this very same problem.
Let us demonstrate this. The time required to solve this problem
by difference methods can be determined by the formula

t, = N"t,,

and the time required to solve the system of sensitivity equations /254
is

1 + N't o
P-

Intthese formulas, we use the notation: tl is the time needed

to sblve the (n + l)-th initial equation; Np is the number of
equations; n is the order of the initial system of equations
without taking into account the differential equation for the
independent variable (t = 1); and k is the coefficient of

op
the common operations.

Let us compute the ratio

StP where - = n±1
Y ltkr k 1

_g 8+ NP

The coefficient of the common operations kop depends on

the complexity of the right-hand sides of the sensitivity equations
and usually varies in the range kop = 0.6-1.1.

The numerical values for nt and 7't are in Table 7.4.

Table 7.4
Coefficient of Effectiveness for Difference Methods

NP

1 2 3 4 . 1 2 3 4

1 3 1.50 1.29 1.20 .1.15 1.86 1.62 1,50 1.44
3 10 1.82 1.42 1,29 1.22 2.26 1.76 1.61 1.51
4 15 1.86 1.44 1.30 1.22 2.32 1,80 1.63 1.52
5 21 1,93 1.46 1.31 1.23 2.41 1.83 1,64 1,55
10 66 1.99 1.50 1,33 1.25 2.50 1,87 1.67 1.57
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From Table 7.4 it follows that using the sensitivity models
to determine the partial derivatives of expansion (7.8) is the
more effective, the greater the number of parameters being opti-
mized in the system under study and the smaller the order of the
initial system of equations (7.16).

When selecting a method of computing partial derivatives of
expansion (7.8), we must takeninto account both the advantages
of the sensitivity models (in the sense of machine time outlays),
as well as their drawbacks (considerable cumbersomeness in
arriving at the sensitivity models), as well as the advantages
of the difference methods associated with integrating only the
initial system of differential equations and other criteria of
practical importance.

In estimating the effectiveness of these two methods of
arriving at expansion (7.8) from the standpoint of the cost of
solving the problem posed, we can obtain a result that is con-
trary to that shown in Table 7.4.

For the very same process of optimization using the two /255
above-described schemes of computing partial derivatives, the
cost of the solution can be determined by the following relation:

C preptprep + prog prog + c-o +'wts (7.38)

where a prep, a prog' c-o are coefficients characterizing the

cost of one hour of operation in preparation, programming, and
check-out of the program on the digital computer; aw is the cost

of one hour's operation of the machine taking into account the
cost of one hour of work by the operator; t is the timeprep
required to prepare the problem for programming (hours); tprog
is the time for programming (hours); t is the time requiredc-o
for checking out the problem (hours); and t is the time required

to solve.the problem on the digital computer (hours).

Let us assume that the time of each operation is proportional
to the number of the differential equations that are to be inte-
grated in carrying out the optimization process. Table 7.5 gives
all the formulas required for the calculations.

Referring to the data in Table 7.5, we can represent Eq. (7.38)
for the two methods of computing partial derivatives in the
following form:
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Table 7.5
Formulas for Computing the Time of Preparation,

Pitogramming, Check-Out, and Solution of
the Problem

.Symbols Methods of sensitivity Difference
theory methods

t ;2 +n s + 3s 2), p )
prep prep2 (s2 prep 'i

t 2 - n (s2 + 3s + 2 +1)
prog Pprog 2 prog

t 2 + n (s 3s (2)n (S+ 13
c-o 2 - .

t 2+n(s +3s+2)tl op  S2 + 3s + 2tnt
s 2(n- 1) 1 st op 1 st

Y aprepPprep + aprogpprog +

+ 'c-oPc-o

Remark. nst stands for the number of optimization
stages.

Cr 2 + n(s 2 + 3s+2) + a t k 2 + n(s L 3s +2)
C'=) w 1 opnst 2 (n+ 1)

w 1 st

For a prep 3, aprog = 1.5, a = 35 a = 32, p
prep -o w prep =

3, prog = 0.5, c-o = 0.5, nst 5 t = 0.1, and k = 0.8,

the numerical values of the criteria C and C as a function of
the number n and s were computed and are in Table 7.6. Table 7.7
gives the ratio of the criteria Cr to CP characterizing the /256
effectiveness

Cr
jc = -
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Table 7.6 Table\.7.7
Numerical Values of the Cost- Numerical Values of the Co-
j Effectiveness Criterion efficient qC

Cr CP n

12 3 41 3 2 J I

1 1.89 1.69 1.84 2.25
1 200 225 299 419 106 134 162 190 3 4.01 3.56 5.01 5,41
3 682 706 1134 1386 170 198 226 254 4 3,44 3,21 4,01 5.44
4 1026 1049 1422 2077 298 326 354 382 5 3.69 3,46 4,41 5.99
5 1438 1460 1984 2907 394 422 450 478 10 4,07 3,99 5,29 7,70

10 4534 4547 6196 9126 1114 1142 1170 1198 ..

In Tables 7.8 and 7.9, analogous calculations for the very
same coefficients a and p when tI = 1 are presented as an example.

Table 7.8 Table 7.9
Numerical Values of the Effective- Numerical Values of the

ness Criterion Coefficient C

Cr CPn

S 1_ 2 3 4 1 1 2 3 4

1 0,683 0,870 1.010 1.100

1 365 490 600 676 535 562 588 615 3 0.610 0.875 1.(90 1,230

3 1003 1470 1860 2132 1655 1682 1708 1735 4 0,594 0,873 1.100 1.260
4 1460( 2170 2760) 3 172 2,155 2 482 2 508 2535 5 0.585 0,891 1.120 1,270
5 20o8 30(10 3 84-0 -1 420 3 4I1.1 31442 3 468 3 195 10 .0,565 0,878 1,120 1,290

10 i114 9310 11 940 13780 10615 10 642 10668 10695

From Table 7.7 it follows that applying difference formulas /257
for computing partial derivatives is more effective from the
standpoint of the cost criterion of the optimization process than
using differential sensitivity equations for t1 = 0.1 hour.

Here the coefficient of effectiveness q C rises considerably

with increase in the numerical values of s and n. The results in
Tables 7.8 and 7.9 indicate the redistribution of the effectiveness
of these methods discussed for different values of s and n. Here
the coefficient of effectiveness qC is smaller than unity for

s and n and increases with increase of s and n.

Note that the data in Tables 7.6-7.9 were obtained for arbi-
trary values of the coefficients a and p. However, analysis of

251



these results indicates the need for conducting guiding calcula-
tions when planning the optimization process. for a digital computer,
since by giving preference to a particular method of arriving at
the Taylor series characteristics without analyzing the class of
problems can lead to superfluous time outlays as well as to unnec-
essary cost in searching for an extremum of functions of many
variables.

7.4. Methods of Constructing Approximating Polynomials

Underlying the methods of computing the coefficients of an
approximating polynomial is the problem of the optimal approxi-
mation of a function of many variables with polynomial '7.13)
having specified degree d. If the function I (k k 2 , ... ks

is computed at the points k( k )  (j 1, 2,

M), we have a problem of the optimal approximation of function

I(K) with the polynomial I(K) at the points k1 1 k ... k( J

that is, a problem of pointwise approximation /427. Suppose
the quality criterion of the approximation is of the form

---- ' -(7.39)

where P (K ) is a weighting function characterizing the
requirements on the precision of the approximation at the specified
points (j = 1, 2, ... , M).

When p(K) = 1, we have the method of least squares. Let us /258
look at the table of experiment planning for the case of constructing

a quadratic approximating polynomial. For the set 'of coefficients

k(j), k2 ... , k (j = 1, 2, ... , M) suppose we have computed

the function I ) / ( j ) 7 = I().

The results of the calculations are in Table 7.10. Suppose
M > M1(Mi=  _~~). Introducing for x:consideration the matrix X

composed of elements from Table 7.10 of order (M, M1 ) (c6lumns from

1 to Ml, rows from 1 to M), and the matrix X*X of order (Ml, Ml),

as well as a vector b of order (M, 1) (column M1 + 1), we can write

out the required ratio of the method of least squares for computing
the coefficients of theaapproximating polynomial, which are elements
of the vector A (ao , a, a2 , ... , as, all, all 1 2  ... , a ss). We will
have
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A (XX)- (7.40)

Table 7.10 From Eq. (7.40) it follows
Table of Experiment Planning that by filling out Table 7.10

in conducting the experiments,
- we can easily compute the co-

1 2 ... s+l , +1 coefficients of the approxi-
No mating polynomial based on the

0 , A k s A0 formula (7.40) presented if
the matrix (X*X) is nonsingular.

I 1 ) k - k. (.. ) IM Since the number of terms of

2 1 k k ) .k k2) ... k () 2) the quadratic polynomial is

23 1 - )kS .. k .. M , for the matrix (X*X) to
3 1 2 A ( k ) . k (3)

S.....................be nonsingular it is necessary

S ... 2A) that the condition M >M be
M 1 2 * S

satisfied, first of all, and
that there be no repeated
experiments, secondly.

When J()i1 ,I it is necessary that each j-th row of the
planning matrix (all elements of the j-th row of Table 7.11) be

multiplied by iVii') Then we can use Eq. (7.40) to compute the

elements of vector A.

Thus, the process of computing the coefficients of the approxi-
mating polynomial by the method of least squares involves the
following:

1) carrying out M > M1 experiments in computing the function

I ( j )A and filling out Table 7.10;

2) transposing matrix X and multiplying the resulting matrix /259
by the matrix X;

3) inversion of matrix (X*X);

4) multiplying the resulting reciprocal matrix (X*X)- 1 by
the matrix X*; and

5) multiplying the matrix (X*X)-1X* by the vector b.

All computations in this program do not represent serious

difficulties when the computations are conducted on a digital
computer. Overall, the method of least squares admits of non-
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rigorous experiment planning, that is, selecting numerical values

of the coefficients" k (i = 1, 2, ... , s; j = 1, 2, ... , M), in

contrast to the difference formulas used in the preceding section.
In rigorous experiment planning the matrix X must necessarily be
specified before the beginning of the "experiments". Nonrigorous
experiment planning can involve a random selection of the sequence

of-point k (i = 1, 2, ... , s), (j = 1, 2, ... , M) in which the

function 11 /_ / is computed, or selecting the sequence of

points k (i = 1, 2, ... , s) on the condition that the sequence
1

of numbers I(j ) (j = 1, 2, ... , M) at least not increase. This
can be done by using various planning schemes.

7.5. Method of Stochastic Approximation in Problems of Constructing
Approximating Polynomials

To construct models of the quality criterion and constraints,
in the algorithms for optimizing control systems, we can use the
method of stochastic approximation. This obviously becomes possible
if we introduce a set o of increments of the parameters AK being
optimized and assume that on the set w the elements of vector AK
are random with an assigned symmetric function of probability
density distribution f (AK). Then when the quality criterion

I (AK) is approximated by polynomial I (AK), with minimizing of
the criterion for estimating the precision of the approximation

J= M I(AK) - I (AK) 2

we can use the above-derived working formulas for computing the
coefficients of the approximating polynomial. Thus, under the
quadratic model of the quality criterion

S . .

I (GK) - a( + ' a&k 1 + V a,;;kj k1
=1 i. j= I

(/<J)

we will have the following working formulas for computing the /260
coefficients a o , a i , and a..ij:

ao = 1+ [M 2o-

(7.41)
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ai =<j,

M i [ak -(. [dtr) (i == z, ,.., 1);

a, - z) 1,2, (7.41)
"i k (cont)

where

Z = MAK [I (AK)Ak, (i= 1,2 .... s),

Z l = M AK 
I
l (AK ) Ak k J (iij= 1.2,..., s). (7.42)

Eq. (7.41), under the normal law of probability density dis-
tribution of vector AK with assigned root mean square values of
its elements (i = 1, 2, ... , s), are of the form

ao= 1+ Z- -1 _(2 ,

=-1

a,=--s- (i = 1,2, ... , s);

21

I - ':Zo

q ) <j = ,..s);

' (7.43)

One feature of using Eq. (7.43) when computing the coeffi-
cients a , ai , and aij is that on the set S2AK a central point
(0) 0K

K is singled out and all elements of the vector K are-grouped
relative to it with assigned probability distribution (we are
talking about the vectors AK). The elements of vector AK can

be distributed with equal probability relative to the point K ( 0 ) /261

on the set w . If AMi [-bi,b], then when -M[Aki,]=O, M [kI-=
(i = 1, 2, ... , s), from Eqs. (7.41) we get the following relations:

41 -1 5)as Z 'I ;9 Z2
42 5



- (1 < j = 1,2,..., s),
bi

4b 15 (i= = 1,2, ...,s).

(cont)

For equal ranges of variation of the elements of vector AK,
Eqs. (7.43) and (7.44) are considerably simplified and are of the
form

b22
ao= 1 - Z 2 Z ;

1=

(i j= 1,2,..., s)(7.45)

and

ao = I"46
i=1T, Z b _3Z 1 0

( -< j= 1,2,.... s),

12 -15Z -- 1.b Zo

(7.46)

And, finally, for the normalized elements of vector AK (,= /262
= i), Eqs. (7.45) and (7.46) become

ao= + -zZ( ;)

1 -

(7.47)
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a, = Zj' (i = 1,2,..., s),

i2 (i= = 1,2,... s),

Z I  (i<j= 1,2,..., s) (7.47)
(cont)

and

S

o 4+ .s)z. Z).

i=1

aI = 3Z ) (i = 1,2,...,s);

45Z (2) - 15Zo
a 4 (i = j = 1,2,..., s),

9Zi:' (i< j = 1,2,.., s). (7.48)

Eqs. (7.47) and (7.48) are quite simple computationally
speaking for computing the coefficients a , ai, and ai~, of a

second-degree approximating polynomial if we know the numerical
(1) (2)values of the quantities Zo, Zi Z . Since computing the

exact values of these quantities in accordance with their mathe-
matical expressions (7.42) does not appear possible, then in

S ( ) A (2)
their place we can use their estimates Zo . z 5 Z , determined

by one of the known approximate methods of statistical analysis.
To do this, we must set up the sequence of vectors

AK' K ,..., AK ". (7.49)

whose elements satisfy the selected law of the distribution of
probability density f (AK) (normal or equiprobable), then by
computing the function I (AK) for each element of sequence (7.49),
we can construct the sequence of functions

i'M [,Ki l )], - [adK'],..., i"2 [[KA"]. : (7.50)

Treating the elements of sequences (7.49) and (7.50) by one
of the methods of the statistical analysis of nonlinear systems,

A A (1) A (1n
we can compute the estimates Z , Z. Z. , Thus, when using /263

the method of statistical tests we will have:

= 20_ v,

S ] (7.51)
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I=1

I N 1 i

p P [AK(" ) AkY)IA (j<j = 1,2,.. ., s).
S=," (7.5')

(cont)

Essentially, the only requirement in conducting the above-
(^ ^ (1)described computations to arrive at the estimates (Zo N ( j )N

(2) 1 1
(Z1 N1 is the requirement that the elements of sequence (7.49)

satisfy the specified law of the distribution of probability
density of vector AK.

Analyzing the foregoing, it can be noted that this algorithm
of the method of stochastic approximation jointly with Eq. (7.51)
for computing estimates leads to the necessity of setting up
sequence (7.50). The latter is a quite computationally laborious
operation if the function I (Ar) is the mathematical expectation
of the specified random function, for example,

I(AK)= M, [(V, AK)]. (7.52)

To compute each j-th element of sequence (7.50) we obviously
must construct the sequence of Vectors

VO2, V(2,.-V (A 2 (7.53)

and for each of its elements V(i) we must compute the sequence of
functions

1,,l)[AK j)__ V'', ,, [(K( ) v() ],..., V(2)(,)[aK(), V(N,,]. / (7.54)

Treatment of the sequence (7.54) for example by the method
of statistical tests using the formula

(7 [AK )]). N [A,

.. . . j=, (7.55)

then gives the necessary estimate of the required mathematical
expectation (7.52).

Overall, to_construct a quadratic model of the quality criterion
we must perform N = 'N1 X N2 integrations of differential equation

(7.2) describing the control process. Thus, when N=N2'; I00\ , /264

the number N > 10,000, which means a fairly large volume of
computational work and cumbersomeness in this approach to setting

258



up models of the quality criterion or constraints. For a high
order s of the vector of the parameters K being optimized, this
approach nonetheless can be more applicable than the algorithms
described in sections 7.2-7.4. Owing to the necessity of reducing
the number N of integrations of differential equation (7.2),
below we look at several algorithms based on the ratios of the
method of stochastic approximation.

To do this, let us introduce the random vector :.A]composed
of elements of the vector of random perturbations V and elements
of the vector AK (we assume the randomness of vector AK for
computational purposes). Then we can set up a polynomial for
the function ' (V, AK);1

q) (V, AK)a a, + Ak + aikAkk4-
=1 , j=

m m S III
+ by, + N b 1vv 1 + V c -Iki

1i=1 ,j 1 =1i=I

fit S S Ik

ij=1=1 ,j=1,v=1 (7.56)

Performing the operation of averaging polynomial (7.56), we get

S m

I(AK) a- + V aAk, + adk-ak 1+ b bM [V] +
i=1 1,j=1 I1c

+* cH1 iM Vi] Ak, + N1 c 1M ] AkAk,.

(7.57)

To obtain Eq. (7.57), it is assumed that there is no correlation
between the elements of the vector A . By writing out Eq. (7.57)
in the form

I (AK) = ao + 2bM + a, + Cill M l Ak,

+ 1 + '1 A [v2] Ak,k.,

i.j=1 v=1 (7.58)

We can state that we have obtained an approximate quadratic model
for quality criterion (7.52). It appears possible to consider a
.airly simple algorithm if we propose another method of computing

(1) (2)
the elementsZ 0 , Z I  Z , and so on.

i 59ij
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Since /265

Zo= MaK I (AK),

then with reference to Eq. (7.52) for the quality criterion

jI(AK) = MVj I(V, AK)j)

we get

SZO= MAK I(AK) =A MK [MI,. ( (V, K)] =
= MAK, V .D V), (7.59)

if the elements of vectors V and AK-are uncorrelated. This
assumption is easily satisfied in practice, since randomness is
imputed to the vector AK formally only for computational purposes.

An analogy, we can describe algorithms also for computing
(1) (2)the elements Z (.) and Z.. . We will have
1 13

Z ' = I aK[( ) A k -- K, v I , (AK, V)Akj,1 (7.60)

Z)= MAK [I(AK) AkAk1 ] = MAK. v [ (V, AK) kAk (7.61)

Essentially, for uncorrelated elements of the vectors V and
AK, the operation of successive determination of the mathematical
expectation of the function D (V, AK), initially by averaging on

the set QV of the elements of vector V for fixed values of vector

AK, and then averaging the results of I (AK) on a set WAK in

accordance with Eqs. (7.59), (7.60), and (7.61), can be replaced

with the operation of single averaging of the function (DI(V.AK)j

on the set Y'2( vUtQ ,K In accordance with Eq. (7.59), (7.60),and

(7.61), we can write out the formulas for computing the estimates

of elements Z , Z (2 ) for example, by the method of statis-
o  1 ij

tical tests:
"= , (1)" [A'C', v"1,

l=-1( N' N,, N '' [ '),

(2 ) ], Ak1"Ak5" (i<]j= ,2, . 7.6
2=1

260



In order to use Eq. (7.62), we must construct two sequences:

a sequence of rafitdom vectors i[f(A)=(f)(AK)

A( ,(7.63)

the sequence of numerical values of the functions /266

- - (7.64)

computed for the solutions to nonlinear equation (7.2) for each
element of sequence (7.63). In accordance with the notation (7.63),
we can rewrite Eqs. (7.62) as\

N,

/1=

(Z")N:, FV A AI

(2.) - ,V +I) fA (')j ",,+,dn~j (I - 1,2. s). (7.65)

Let us look at an example of applying Eqs. (7.59) - (7.61)

to compqte the numerical values Z , ) , (2) , if the function
0 i ij

F)(V, AK)- is specified on the set nA with the characteristic

(V = const = 1, oAK = const = 1, and is of the form

(V, AK) = 0,5 + O. vAk 0.32v 3Ak + 0.4v 12 2 +

+ 0.3vvAk8 + 0.05v2v Ak Ak2 + O.O1viv AkAk. j

Computing I (AK) in accordance with Eq. (7.52), we get

I (AK) = M, - (AK, V)i = 0.5+ O.lAk +0.6k +0.o4Ak +

+ 2,7Ak 0 .75Akk,k + 0.03AkA 2. (7.66)

Using this result (7.66), let us compute in accordance with
Eq. (7.62) the quantities necessary in constructing the quadratic
model:

Z, = 3.33: ZI' -0.6; Z"' = 0.4; ZI' = 3q59;

Z = 0.75; Z2 = 8,89.

(7.67)
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Obviously, the numerical value (7.67) can be obtained by
using Eqs. (7.59) - (7.61). Thus, we will have

Zo = 3.33; Z' = 0,6; Z2"= 0,4;

Z = 3,59; Z1 = 075; Z = 8.89.
- (7.68)

The numerical values of the elements Zo, Z1) Z in
0 i ij

accordance with the formulas (7.67) and (7.68) we have obtained
coincide, however in the case of (7.68) the calculations proved
to be si nLerj by virtue of the use of the single operation of
mathematical expectation.

Let us compute the coefficients a , ai, and aij in accor- /267

dance with the model (7.47). We will have

ao = 0,42; a, = 0.6; a., = 0.4;

all = 0.13; a., = 0,75; a, = 1,78.

In accordance with the foregoing, the quadratic model of
the quality criterion can be represented by the equation

I (AK) = 0,42 + 0.6,k, + 0,4Ak. + 0.75Akk. +,
0-+ 0,13Ak2 + 1,78Ak2.

A similar quadratic model of the quality criterion can be
constructed also for the equiprobable distribution of the prob-
ability density of the elements of vector AK. Thus, when b = 1,
we get:

Z, = 1,436; Z('V = 0,2; Zl' = 0.133;

' = 0.489; 12 = 0.083; Z2 = 0,72,

and, this means, that when

a, =4,53; a, =-0,6; a = 0.4;

a = 0.11; at = 0.75; a., = 2,71

the model of the quality criterion is of the form

I(AK) = 4.53 + 0.6Ak + 0.4k,2 0,75k 1 Ak +

+ 0.211Ak + 2.71 2. (7.70)
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Models of quality criteria (7.69) and (7.70) differ from
each other, as do the results of searching for an extremum for
these models

Ak"' = -- 4,9; Ak"' .903;

-"' = - 3.75; Ak') ;0,304.

Therefore selection of the law of the probability distribution
of vector AK and the statistical characteristics of its element
constitutes one of the principal problems in this algorithm
based on the method of stochastic approximation.

Thus, essentially this method boils down to expanding the
space of random vectors QV of this process by imputing random

properties, for computational purposes, to the vector of incre-
ments AK of the parameters K being optimized and setting up the
random vector AK. Treatment of the results of the output
coordinates of the controlled process (7.2) obtained when it is
acted on by the realizations of the enlarged vector A enables /268
us to carry out the above-indicated computations and to construct
the model of the quality criterion and the constraints necessary
for optimization.

An advantage of this method for setting up models of the
quality criteria and constraints on the set of parameters being
optimized lies in the considerable reduction of the volume of
computation through the single deriving and treating of the random
sequences (7.63) and (7.64) instead of the sequences (7.53),
(7.54), (7.49), and (7.50).

Returning to the quadratic method of the quality criterion

I(AK) A + B*AK+ AK*CAK (7.71)

where

A a, B = (a,), C - (a),

written in matrical form, we should note that by virtue of
employing the approximate methods of statistical analysis for
computing the coefficients of the approximating polynomial, the
elements of vector B and matrix C contain random components AB
and AC. Therefore Eq. (7.71) can be written as

=A + + AB) AK+AK* + AC)AK.
(7.72)
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The condition of the extremum of quadratic form (7.72) here
is of the form

A (B.Bj (7.73)

The random component of the matrix C can to a considerable extent
determine the fact of the existence of a matrix that is the
reciprocal of matrix C, and this means the soundness of the
expression (7.73). Since in computing the elements of matrices
B and C we can estimate the possible maximum value of the error

iAcjI j<LL and Abij <Ei,j it appears possible when necessary to organize

a correction to matrix C such that by changing its elements dij

by the quality [dAcri|<Eijl we can ensure that the conditions for the

existence of the reciprocal matrix C are met. Denoting the

correct&d matrix by C, we can write conditions (7.73) in the form

A-__ -i-C- 1AB. :# -. 2(7.74)

The second term in Eq. (7.74) then will characterize the error

aKA K=- -'-d in the computing of vector AR at each step of opti-

mization. The foregoing indicates the necessity of the statistical

analysis of the results of optimation obtained by employing numer-
ical iterative methods.

In conclusion, let us look at the problem of constructing /269

quadratic models for qual'ity criteria of the form

I I(AK)= M [)P (V, AK),
T" I (7.75)

l(AK) = V [(1 P(V, AK) dt] (7.76)

(7.77)

quite often encountered in problems of the statistical optimization
of control processes.

We can write expressions analogous to. Eqs. (7.59)-.- (7.61)
for the quality criterion (7:75), when p > 2. We will have:

Zo = MAK, v [ 4 .(V, AK)1,
Z 1 = MA, v [I, P (V,.AK) A-k].

SM264, (V, AK) kAkl.
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We can proceed in like manner also in computing the vector

:Z=(Zo, Z)", Z for the quality criterion (7.76). Here, we get:

Z, = M,,A- 'P(V, AKA. t)dt .
I-~

Z i '  MV, S G" (V, AK, t) dtAk ,
[0

ZI' = Mr ( r D" (V, AK, i) d/AkiAkj .
i" j (7.79)

The situation is somewhat more complicated when we are
dealing with the quality criterion (7.77). Transforming Eq. (7.77),
we get

13 = M1,1. 1 [,, (V, AK)] - (M ,(, (V, K) i2.
(7.80)

Since our developed apparatus cannot be applied directly to Eq.
(7.80) by virtue of the nonlinearity of the above-described
transformation, in this case we can construct quadratic models
for the criteria

MI. [(I,)2 (V, AK)] and M v 1( ( V, AK)J

in the form

Alt. I 2 (1" AA')I - ' AKA .

A v !, (|j, Ah')j = ~ b.-I I))*Ah"-' AA'*bK-AK.

(7.81)

Substituting Eqs. (7.81) into (7.80), we can get an approxi- /270
mate formula for the quality criterion (7.77) in the form

I" t (1ao -- O"I + Ia1' + 2bob"')" AK+
SAK* ia ) -- 2bbs - b " (b(o)*] AA'. (7.82)

We can similarly carry out computations for the integral criteria
of the form

I ,t, (VAK).-M 1,4 (V, AK))dt .
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7.6. Methods of Allowing for Constraints in Problems of Opti-
mizing Control Systems

Above we formulated the problem 7.2 of the multidimensional
optimization of an automatic system described by the nonlinear
stochastic differential equations. The methods of computing the
numerical values of the quality criterion and the constraints,
which are statistical characteristics of the assigned functions
of solutions to the stochastic nonlinear differential equations,
were discussed in Chapter Five. Below we examine the problem of
nonlinear programming, assuming that all the necessary computations
can be successfully carried out by using the above-presented
methods, in the form of problem 7.2. In examining the methods
of the solution of problem 7.2 we will assume that the vector 1
sought for does exist. Problem 7.2 boils down to general problems
of nonlinear programming, for which there are as yet no common
methods and solution algorithms if nothing is known in advance
about the nature of the functions I, Q1, Q2 ' "''' Q£"

The quality criterion I(K) in this problem can have several
extrema, and the constraints can be nonconvex functions of para-
meters of the control K. This feature of the problem led to the
development of a long series of approximate methods and algorithms
for solving problems in nonlinear programming employing both the
determinate as well as the random search for the optimal solution
/.6, 377.

Let us describe several particular problems in nonlinear
programming that can be posited as the basis of the approximate
methods of solving the nonlinear programming problem of the form
7.2.

Problem of nonlinear programming. If the quality criterion
(7.1) and the constraints Q1, Q2 ' ... Q1 are linear forms of the

sought-for parameters:

S

I an + l - N ki,
(7.83)

(7.84)

then the problem of determining the optimal vector K is a linear /271
programming problem, which can be mathematically formulated thusly:

Problem 7.3. Find the optimal solution K from the condition
that the quality criterion (7.83) is a minimum given the constraint
(7.84) and the constraints of the form (7.5).
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The methods of solving linear programming problems are quite
well elaborated. The principalmethod of solving the problems in
linear programming is the simplex method.

Problem of quadratic programming. If the quality criterion
(7.1) is quadratic in form, as follows

S S

I (K) = a + V h + V a kik1,
l=1 i.j=1 (7.85)

and if the constraints are linear relations of the form (7.84) and
(7.5), then the problem of determining the optimal solutionsK is a
problem in quadratic programming. Essentially it amounts to the
following.

Problem 7.4. Find the optimal solution K from the condition
that the quality criterion (7.85) is a minimum, given the constraints
(7.5) and (7.84). The methods of solving problems in quadratic
programming are adequately elaborated, however known methods in
algorithms require convexities or rigorous convexity of -th
quadratic quality criterion (7.85) being optimized.

Searching for an extremum.with equality constraints. If the
constraints (7.6) are the quality constraints of the form

Q =Q ( i=1,2... ), (7.86)

then the problem of searching for the optimal solution K is solved
by employing Lagrange multipliers, as the problem in searching for
the extremum of the function

n =Imm { (K)+ V [Q,-Q] (7.87)

Since the Lagrange multipliers are not specified in advance,
here to determine them we mast then use the relations (7.86). In
the case of the quadratic quality criterion (7.85) and linear
equality-constraints, this problem is solved by employing the
following algorithm. By writing out Eqs. (7.85) and (7.84) in
matrical form, we will have

/ ao~ K K*A/ ~(7.88)

Q = bo + BK, (7.89)
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where /272

a is a number; a'= (ala,as...q);
A = (a;j); B = (bil);

bo= (bo bo.. b, ).

Since in this case Eq. (7.87) is defined by the formula

H = (ao -- a*K+ K*AK+ A* (bo + BK)}.

A*- = (}'1})2"  s)

the conditions of the optimality of quality criterion (7.88) are
of the form

K = -a+2AK+ B*A =0,

whence

K= - A-'(a+B.\).2 (7.90)

By substituting Eq. (7.90) into Eq. (7.89), let us write out
an equation for determining the vector of Lagrange multipliers

b - BA-' (a + B.) = Qo,

whence we can obtain the following equality:

A= 2 (BA-'B) bo - Q BA-'a].
1(7.91)

And, finally, by substituting Eq. (7.91) into (7.90), we
.get a working formula for computing the optimal coefficients

K = -A a -- Il lB ( LBA - - Q - - B (.2
(7.92)

-we are seeking. - -..

In this example, Eqs. (7.90), (7.91), and (7.92) are valid if
matrix A is nonsingular. If here the constraints are described by
second-order equations of the form

268



g = bo--F- b*K+K*BK K - (7.93)

(g is a scalar), the problem of searching for the optimal solution

K is already considerably complicated, since in this case we will
have

K . (A+ '\ABI- (a+ AB);
(7.94)

+b /273

- 7' (A .-- (a +A .BJ }B {- ( A +
+ A\B)-'(a + AB)) =go. (7.95)

Eq. (7.94) and (7.95) are nonlinear equations in the numerical
value of the Lagrange multiplier A . To solve Eq. (7.95), it
is now necessary to use numerical methods. When i equality
constraints exist, we will have a system of fourth-degree non-
linear equations.

There are several algorithms based on reducing the problem
of nonlinear programming with inequality constraints to a problem
in searching for an extremum of one function of many variables
using "penalty" functions. Let us introduce a miscoordination
vector in meeting the constraints

,Q = Q (K) - Qo

and "penalty" functions

(8Q,)i= 1,2,...,.

Then we can seek the solution to problem 7.2 as a solution
to a problem of searching for the minimum of the function

H= rain I (A) + V pi ( Qi) 6Qj (K)

H ,mn (K) + N ;I')
'' I (7.96)
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The "penalty" functions can be of the form

SQ) = i h 0 o

o ar , o.
,i (aQ1)= ei'%

and so on.

Here hi are fairly large positive numbers.

The problem of searching for an extremum of Eq. (7.96) can
be solved by familiar methods of searching for an extremum of
functions of many variables.

Of interest is an approach to solving problem 7.2 using /274
algorithms of the successive refinement of solutions based on
algorithms from linear and quadratic programming. The method
of successive optimization for solving problems in nonlinear
programming is given in a study by V. M. Ponomarev /59/. Essen-
tially, the method of successive optimization amounts to the
initial problem in nonlinear programming being replaced with a
sequence of problems in quadratic programming which was examined
above. Since the method of successive optimization has found wide
use in solving problems of the parametric synthesis of control
systems of flight vehicle motion, control systems for industrial
processes, and so on, and is fairly well known to a wide range of
specialists in the field of control theory, we omit presenting
the scientific and methodological fundamentals and the computational
features of the method of successive optimization within the frame-
work of this present book.

We can similarly construct a process of successive optimization
based on algorithms in linear programming. Let us explain the fore-
going by assuming that the quality criterion and the constraints
are convex or rigorously convex functions.

Suppose we have selected an initial (figurate) point Ko in
O

the parameter space K. In the neighborhood of this point we

can write out expansions of the form

S, l & A
Qo, + (!L9K w+...

QQK(K:)+ ()* 0+AK..[-) +(7.98)
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for the quality criterion and the constraints, where AK is the

s-dimensional vector-column of the increments of parameters AK=
= -- K -, 1K), QJ K), i =1,2,..., s are the values of the quality

criterion and the constraints computed at the points KO, ' a

K, ,'y- which are, respectively, the vector row and the matrix

of the projections of the first- and second-order gradients of
the quality criterion and the constraints, and so on.

Limiting ourselves only to the linear terms of expansion
(7.97) and (7.98), we can formulate the following problem in
linear programming:

= mi l(K.) - (KO) AK

Q, (KO) + (KO AK < Q (i = 1,2, .. 1).
(7.99)

Constraints (7.5) can be represented in the form

S<KO -+ AK(< k. (7.100)

Naturally, expansions (7.99) are valid in some closed para- /275
meter space

9 (A ) , (7.101)

where W-is the vector column of constant numbers.

In this problem the vector W is unknown and its determination
requires considerable computations.

Assuming that expressions (7.100) can be determined, let us
write out the process of searching for vector K supplying a
minimum to the quality criterion (7.1) for the constraints (7.5)
and (7.6).

For the sequence

-W <I < ... < W <... (7.102)

we find the sequence of vectors

(7.103)
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and, this means, the sequence of numerical values of the quality
criterion

1 (KO) > I (K,°) > ... > 1(K)) > ... (7.104)

and the sequence of numerical values of the constraints

Q, (KQ) , Q (K,) Q, ... ,Q (Kj < Q ,
(p= 1,2,..., 1) (7.105)

by solving the sequence of problems in linear programming

I = mln I(K)+ - *

KI- + AK C K
K (j= 1 , 2,...). (7.106)

The computations of the sequences (7.104) and (7.105) end at
the i-th element of sequence (7.102) when one 6f the conditions
of sequences (7.104) and (7.105) is violated.

Let us call the constructing of the i-th sequence (7.102)
a stage in the solution of the optimization problem, and the
solution of the linear programming problem at the i-th stage for
the j-th element -- a step.

Since the values of the quality criterion and the constraints
are computed at the end of each optimization step for the construc-
tion of sequences (7.104) and (7.105), these values are used at
the new optimization step for revising the linear programming
problem (7.106). Gradients of the quality criterion and of the
constraints are computed only at the first step of each opti- /276
mization stage.

At the point

0'l_ O + AKo

the linear programming problem is formed again, that is, its

elementsd(Ki), Kj are computed.

For the new sequence

272(7107)
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and

K ,, , K, =K,+ AK; KI= K-K; K.=K.+A . = K = -K +AK:...

a solution is carried out for the linear programming problems
with W = wil (i = 1, 2, ... ):

1= min( (Kfl (K)]iK);

Q= QP(K) + (K)]dK<Q, p= 1, 2, .. 1;

K K=a + AK" K;
IA ,j < wl (i = 1,2, ... )

(7.108)

and at the points of the parameter space

corresponding to the solutions obtained, the values of functional
I(K) and constraints Q (K) are computed based on exact formulas,

and the following sequences are constructed:

I0(KA) > (KI) > ... >I(K)>...,
Q (Ku) < 00,;

S ...; 
(7.109)

Violation of one of the conditions (7.109) at the j-th element of
sequence (7.107) serves as a signal for concluding the process of
solving the linear programming problems (7.108) and the formation
of a new linear programming problem at the point Ki"=K -+AK.

Thus, a sequence of numerical values of the quality criterion

) > (K) >... > )>... (7.110)

is constructed.

If the elements of sequence (7.110) standing one after the
other-differ by a prespecified quantity- c- , we can halt the solution -
process and assume that the vector of KO converges at the E- /2770

neighborhood of K, providing a minimum to the quality criterion
(7.1) given the constraint (7.5) and (7.6).
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For a complete description of the procedure we must dwell on
the problem of forming the sequence W = fwif.

To solve the question of selecting sequence-

S< W" ... (7.111)

we can make use, for example, of analogs of gradient methods.

If each i-th sequence (7.111) consists of a single step,
then the gradient method can be reduced to this process of opti-
mization, as an analog. Here, at each step we must determine the
gradients of the quality criterion and the constraints in the
linear programming problem. Suppose the magnitude of the step
is determined by the formula

S

$ ,2 --2 = 0 .=1 
(7.112)

If the magnitude of the step .p is selected, condition (7.112)
can be used in forming the vector W.

i
For example, w. can be determined by the formula

P k (Kti)
Wi = ( p = 1, 2, ..., s).

I-1 (7.113)

Eq. (7.113) defines the vector W at each optimization stage
and can be used if at this stage constraints (7.6) are satisfied.
If the i-th stage consists of A stages and if conditions (7.6) are
satisfied, the problem of constructing sequence (7.111) can pro-
ceed on analogy with the method of steepest descent. In several
cases the constraint (7.6) can be divided into two groups

Q, - Q = O (i = 1, 2, ..., 11), (7.114)
Q,<Q<0 (t= b,+1, ... ,1). (7115)

Then the elements of vector W are defined by the formulas

27-4

( )- , , " ((7.116)
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Lagrange multipliers 7v, are the solution to the system of /278
algebraic equations

v-i

where

v=1

O, , 0 ok

Here, constraints (7.115) and (7.100) will be taken into account
automatically when solving linear programming problems.

This successive procedure utilizing the formalized apparatus
of linear programming is quite effective when digital computers
are used. Its main disadvantage is that in it the sequence of
numerical values of vector W is not strictly defined. Its advan-
tage is the relative simplicity of the linear representation of
the criterion and the constraints.

The V. M. Ponomarev method of successive optimization pre-
supposes constructing a sequence of solutions in the parameter
space Q K

by solving the sequence of problems in quadratic programming, of
the form

I= min I(Ki,+ K) K +1 y (Ki) AK,,
AK 0 0/Li)*A .,, 2

Q (K,) + (Ki) AK<v Qo

KKA + AKK.

Formulating problems in quadratic programming is much more com-
plicated than forming problems in linear programming. However, the
convergence of the process of searching for solutions to problem 7.2
in this case is not determined by subjective factors, as in the
sequence of linear programming problems. By employing methods df
constructing models of the quality criterion and constraints examined
above, we can successfully apply the algorithms described in this
section to optimizing control systems of flight vehicles moving
in the earth's atmosphere.
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CHAPTER EIGHT /279

STATISTICAL PREDICTION PROBLEMS OF CONTROLLING THE
MOTION OF FLIGHT VEHICLES IN DENSE ATMOSPHERIC LAYERS

8.1. Control of Motion of Flight Vehicles in the Atmosphere
with the Prediction of Phase Coordinates

In a large number of cases the control of flight vehicle
motion in the dense atmospheric layers described by a system of
nonlinear stochastic equations

xi = (x , xe, .. ., x,,, u , .... 1, I, v. ... ., v,,),
xj (tO) = x, o (i = 1, 2, ..., n)

(8.1)

is constructed so that the vector of reference control U(t) is
specified, and the correction of the phase coordinates of the
process is used at specific instants of time tl, t, ... t /t 0, T/

by applying to the system (8.1) the controls AU = U - U acting
along the time interval AT. For definiteness, we will assume
that the duration of the correcting controls U is constant and
equal to the magnitude of AT.

The value of the correcting controls is usually bounded

U( A ' ( I= 1, 2, ... , p),A "" (8.2)

where AU0 are specified constants.
i

Suppose the correcting control is selected on the condition
that -a minimum -value is provided for the-quality -cr-iterion

I= () (AX), (8.3)

characterizing the scatter of the process either at the next instant
of correction t = ti + 1 or at the time instant when the control

of the flight vehicle is terminated.
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Suppose for a specified reference control we know the phase
state of process (8..1) for the unperturbed motion X(t) = X(t).
The effect of the perturbing factors leads to the deviation of the
process phase coordinates from the reference values characterized
by the mismatch vector

\X (t) X (t) - ).

The vector AX is a function of the random perturbing /280
factors (vector V). Owing to the randomness of vector AX(t),
the correcting impulses AU(ti), (i = 1, 2, ..., p) must be

functions of the elements of the mismatch vector.

The solution to the problem of constructing the optimal
control of process (8.1) can be approached in several ways.

One involves determining the function

AU(t)= IaX()t (i= 1,2, ... ,p). (8.4)

In this case, corresponding to the state of the process AX(t)
at the instants of correction ti (i = 1, 2, ... , p), Eq. (8.4) is

brought into correspondence to the value of the correcting control.
However, this control algorithm (8.4) can prove to be inadequately
farsighted.*

The second approach to forming the control actions consists
of using the estimate of the mismatch vector of the phase coordi-
nates AX(t) at the instant of time corresponding to the next
instant of correction t = ti +1. Then the control algorithm
becomes:

AU(t)= [A(i 1+), (8] (5 1,2, ... ,p).
(8.5)

And, finally, the control algorithm canAbe constructed by
using the estimate of the mismatch vector AX(t) at the instant
of termination of the process, t = T. We will have

aUt,, =; [AX(T), 1j (i= 1,2,..., p). (8.6)

Thus, problems of optimal control of the process (8.1)
examined above can be formulated as follows.

Problem 8.1. For the process described by the system of
nonlinear stochastic equations (8.1) we must find the structure
and the parameters of control (8.4) providing a minimum value
for the quality criterion of the process (8.3).
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Problem 8.2. It is necessary, based on data of instantaneous
measurements of vector AX(t) over the time interval between the
correcting impulses to predict the vector at the next instant of
correction t = ti + 1 for the process described by the system

of nonlinear stochastic equations (8.1), and to find the structure
and parameters of the control (8.5) providing a minimum value for
the quality criterion of process (8.3).

Problem 8.3. It is necessary to make the prediction of the
terminal state of vector AX(T), for the process described by the
system of equations (8.1), based on the data of measurements of
vector AX(t) over the interval between the correcting impulses,
and to find the structure and parameters of control (8.6) on the
condition that thennumerical value of the quality criterion (8.3)
is minimized.

To solve problems 8.2 and 8.3, we mist examine the algorithms /281
for predicting the future phase states of the process based on
instantaneous measurement data. Let us examine the solution of
the prediction problem.

8.2. Predicting Phase Coordinates of Nonlinear Stochastic Processes

This problem in predicting the future states of the motion of
flight vehicles in the dense atmospheric layers based on instantaL
%neous measurementsdata is one of the problems of making estimates
of random processes.

A fairly large number of studies /, 18, 27, 48, 83, 1007
have dealt with estimates of random processes. One of the most
appreciable results in this f'ield was obtained by Weiner who set
forth the solution to the problem of filtrationaand outpacing for
the problem of stationary processes with optimal spectra. The
work of Weiner was followed by numerous generalizations (for example,
/5 /) in which the problem of obtaining an optimal linear stationary
or nonstationary dynamic system for carrying out smoothing, filtra-
tion, or outpacing of .the atationary or nonstationary random
processes with finite or infinite observation time was examined.
In these studies the optimal system is described by the integral
Weiner-Hopf equation.

In papers by Kalman /27, 837 differential equations were
obtained for an optimal dynamic system. These results are related
with dynamic models of processes of filtration and outpacing of
random processes.

Let us examine algorithms for predicting the future states
of stochastic processes described by nonlinear equations (8.1)
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Let us assume that in the interval of observation t [. t2J

of process (8.1), several functions

,i,(X ,t), -. ,_,.X,) , ... , X,). (8.7)

are measured.

Owing to the dependence of the solutions to Eqs. (8.1) on
the random vector of perturbations V and the initial conditions
AX o that are random in the general case, the realizations of

functions (8.7) are random.

Suppose the law of the distribution of vector A={V, AXo},composed

of elements of vectors V and AX 0 is assigned and is defined by the

function .;(i-, i,.., , )° Based on data of continuous measurements

(8.7) over the interval t r [tP,t2], let us set up the problem of

determining an estimate of some function y(AX, tpred prediction/)

computed for the elements of the mismatch vector AX at the instant
of time t = ,tpred by treating the measurements with the relation

(see Fig. 8.1)

Y (Ax, t,,) = (AX ) d,
S(8.8)

where ai(t) (i = 1, 2, ... , 1) are determinate functions to be /282

determined.

Eq. (8.8) can be represented in the form

pred, _

A 1 It

Since y(tpred A) and Y(tpred, A) are functions of random

vector A, the problem of determining the functions ai(t), (i =

= 1, 2, ... , 1) can be formulated as a problem of minimizing the
mathematical expectation of the square of the error in predicting
the state y(tpred , A) by using Eq. (8.9)

(A) = y(t predA) = y(t pred A). (8.10)

Let us compute the criterion characterizing the precision of
the prediction. We will have
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S= (M 1) (A)I =. S ( (A)f \ A

- y(tpred,A) - a,(-),(A,.)d (A)dA, (8.11)

where P&A is a set of realizations of random factors A.

After uncomplicated transformations of Eq. (8.11), we get

l= ? i2 (tpred, \)]- 2 ai ()M [y (tpred A) (A,) d -pred'

i. n(8 .1 2 )

Introducing the notation

Ry (tpred M (tpred 17,

R (tpred t) = M (t Apred ) q(t,A)7,y pred t pred i -
R (t, T ) = M /i(A, t) (A, T _,

let us write out Eq. (8.12) for the criterion of the estimate of
the quality of precision in the form

I t

I= R,(tpred) - 2 i' a ;(r)R ( t p r e d , ) d-

(8.13)

Let us find the necessary conditions for an extremum of the /283
quality criterion (8.13). To do this, let us represent the desired
functions ai(t), (i = 1, 2, ... , 1) in the form

ai(t) =  (t) -  A a  (i )  (i = 1, 2, ...,1), (8.14)

where Yi are constant cofactors and Aai(t) are arbitrary functions

not identically equal to zero on the interval t. [ti, t2] and satisfying
the following conditions:

Aa (t) = Aa(t) = 0 (V= 1,2,...,1).
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Substituting Eqs. (8.14) into the right-hand side of Eq. (8.13),
we can easily obtain from the condition

0

the necessary conditions for determining functions ai(t), (i = 1,

2, ..., 1) that are optimal in the sense of criterion (8.13), in
the form of a system of linear integral Fredholm equations of the
first kind:

n(tpred, t) = a r, ,(t, )d- (r= 1,2, ... ,1). (8.15)
lp-I t

We can easily show that conditions (8.15) are also sufficient
conditions for a minimum for criterion (8.13).

Considering the fact that the functions (8.7) and the function
y(tpred) measured for the nonlinear process (8.1) are in the general

case uncentered random functions with mathematical expectations

mn ,(t). m, (), , M, (t)and m (tpred) and correlation functions K, ,l (t),

(i, J = 1, 2, 3, ... , m), KI;4(tpred , t) (i = 1, 2, ... , 1), we

can rewrite the system of integral equations (8.15) in the form

Kyj(tpred, t) + my (tpred )mr(O=

= a() , (t, )+ m, (t) m,, (t) dz (j = 1,2, .. 1)
(8.16)

or

Y (tpred ) (r)ry,. (tpred, t) + m (tpred)m V(t)=

; m , (t) ,, .) d ( I -ft

(8.17)

where r ) are normalized correlation functions.

Let us look at several particular cases. 284
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1. Suppose

Ky, I (iy j = 1, 2, , ),

then Eqs. (8.17) become

m (tpred) = a , ( ) m'4 ( l) d. (8.18)

2. Suppose m y(tpred) = m,()-0, (i=1, 2...., 1), then Eqs. (8.17)

become:

r(tt, 1() (t, d (= 1,2,. 1). (8.19)

Obviously, Eq. (8.18) does not enable us to find the desired
functions ai(t). Eqs. (8.19) enable us to solve the problem of

determining the functions ai(t); here the absence of a correlational

reciprocity between the measured functions rli(t), (i = 1, 2, ... , 1)

enables us to obtain the system of independent integral Fredholm
equations of the first kind for determining each of the desired
functions i (t), (i = 1, 2, ... , 1) separately:

y (tpred) ry,1 (tpred t)= .a ( ),,()r(t,c) d.

If the measurements (8.7) are made with the error

and the latter is determined by two of the commonest cases:

, (t) (t) + an M

then the integral equations (8.15) can be written in the form:

Ryi(tpred t)= 2() +() Rd ., d 1,2, )

j pred '  R,( 1,2,
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if the real instantaneous values of 1;(t) are not correlated with

a measurement error of bijit).

Using Eqs. (8.13) and (8.15), let us write out a formula for /285
computing the criterion of the estimate of the effectiveness of
predicting the function y(t pre), employing Eq. (8.8):

I = R (ted ) - ,()R,(tp , =) d r .  (8.20)
y pred pred(

Eq. (8.20) enables us to estimate the error of prediction and
to make a conclusion of the possibility of employing the prediction
algorithm.

Of interest is an examination of the algorithm for the non-
linear treatment of observation results. To derive the working
relations, it is sufficient to assume that

il (AX, t) = Z (t), A (X, .) = Z2 (t), ... , -, (AX, t) = z! (t),

where z(t) is the observation function.

Then with reference to Eq. (8.15) we will have the following
system of linear integral Fredholm equations of the first kind

Mly(tpred)zj(t)J = S~ (s)M [zl(t)zi(:)]d (j= 1.2, ... ,1). (8.21)

In predicting the function y(t pred) based on one observation

function, we obtain a linear Fredholm equation of the first kind

t ?
R, (tpred' t)=)R,(t,,)d-. (8.22)

Above we examined the problem of predicting process states
based on data of instantaneous measurements in a fairly general
case, namely: in the absence of any assumptions on the process
AX(t). In particular cases, the integral equations (8.15) can
be considerably simplified.

A fair number of studies /19, 32, 60/ deal with methods of
solving the resulting linear integral equations of the Fredholm
type (8.15). If R,.(t,t) in Eq. (8.22) is a symmetric quadratically-

summable positive-determinate kernel and if Eq. (8.22) is solvable,
for its solution we can employ the method of successive approximations.
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We can also use the Fredbolm equations in /327 and convert from
integral equation (8.22) to a system of algebraic equations. To
do this, we must subdivide the interval (tl, t2) into n equal

intervals having the length

and we must set: /286

R,, (t + p- , 1 + qA-) = Ri' (p, 1 2, .. ),

R (tpred ,t+pAt) = RI (p = 1,. ..., n),

a (t, + qA-) = aq (q = 1, 2, .. ., n).

Substituting for the integral i'a()IR,(t, )d-, when t = tI + p t,
the sum ",

n

, Rf ,aA: (p = 1, 2,.., n),
q 

1

we get in place of integral equation (8.22) a system of linear
algebraic equations

Sa= RP (p = 1,2,...,).8.23)
,,=1 (8.23)

If the determinant IR ,, composed of the elements R", is

not equal to zero, the system of equations (8.23) has a unique

solution for any values of RP(p = 1, 2, ... , n) not identically

equal to zero. By virtue of the fact that iR,,(t, )7R1 (t)> 0 and
the symmetry of the function R,,(t,-) , the determinant is not

always equal to zero and the solution of the integral equation
does exist. However, by virtue of the arbitrariness of the random
process AX(t) and the approximate computation of the statistical
characteristics of the nonlinear process (8.1), when_ solving the
integral equation we can encounter the poor causality of matrix

,pR"). Employing the methods of solving systems of linear algebraic

equations, we can find the desired solutions -- the function a(t)
specified at discrete points.
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We can also proceed analogously with the problem of solving
the system of integral equations (8.15). In this case we will be
dealing with the matrix

and with the vectors A*(t)=(a1(1)a2 () ... ai(t)),

B*(t)=(R(tpred, t ) R (tpred t)...R (tpred, t)),

enabling us to write out the integral equation (8.15) in matrical
form

s(tre, t) =SD(.I)A)d-. (8.24)

Subdividing, as before, the interval /t, t2 7 into n equal /287

parts and carrying out transformations analogous to those examined
above for the one-dimensional case, we get the matrix (Dp q ) of
of order (n, n), whose elements will be square matrices DPq of
order (1, 1), whose inversion then gives the desired solution.
However, in the multidimensional case of the integral equation
(8.24), considerable difficulties can arise in the inversion of
matrices of order /(n, 1), (n, 1)7 when there are large values
of n and 1. In addition, we can also observe phenomena of the
poor causality of matrix (DPq) owing to the presence of a functional
relation between the cross sections of individual measurement
functions. Therefore in setting up the problem of prediction we
must take account of the specific features of the process under
study, and when there is poor causality of matrices we must modify
either the observation interval or we must reject measurements not
enabling us to predict the future states of the process.

When examining the problem of predicting y(tpred) based on

data of observation of the functions 7i(t), it was assumed that

the functions mi(t) include errors of measurement 6ri(t), whose

filtration was not carried out during the measurement. In principle
we can set up and solve the problem of prediction for the case when
the filtration-is carried out in advance for the-observation-fun-----
tions i1(t) and carry out the prediction of y(tpred) based on the

output signals of the filter fi(t). All working formulas here

remain as before, and only the procedure of computing the statistical
characteristics of the observation functions required for prediction
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will change. Let us examine this process more closely in order to
find out in what relation we will consider the problens of filtra-
tion and prediction. Using the dynamic model of filtration and
prediction shown in Fig. 8.2, let us write out the quality criterion
for estimating the precision of prediction, here considering that

t

I = Ry(tpred) -2 ()R (tpred )d
+ pred t,' adtst p d

+d

(8.25)

Since

then we will have 28

! tr
I =R (tpred) -2 w(,. ( ) Ry, (t )) d, dr +

i=1 t. 0

I t *

From the condition that criterion (8.26) is a minimum, we find
the required optimality conditions for finding functions wi(t , T)
and ai (t).

Introducing into consideration the functions

w1 (to -) = € (t. ,) + p 1.w, (; r).

a2 (t) = a8 (t) + qcAa (t)
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and substituting them into criterion (8.26), from the conditions

ipi = 0,

Pk -q k

=k 0 (k- ,2,...,L)

we obtain the following relations:

dia = 0:'.!t (" 1) pred' A (

X i(1, P)Rk j( ,k) d d I d--d). =0 (k= 1,2,..., 1):

! , I I

x(t,8)Rk (a, i)dadtJ] dd=0 (k = 1,2,...,1),

whence it follows that the necessary conditions coincide and are
of the form

R,, (t.= a V , ,)d dt (k= 1,,.. (8.27)
pred' j=It o

The foregoing shows that on the condition that criterion
(8.26) is a minimum, we were unable to obtain the conditions
necessary for finding either the optimal impulse transfer function

rv,(t, T) and the weighting function of the predicting device ai(t).

Introducing the notation /289

I ' (8.28)

let us rewrite condition (8.27) in the form

: 4. (tp e V) a, (t) 11 (tv ) -di (k '2,..... (8. .29)
pred' 16=d -j

Comparing conditions (8.15) and (8.29), we can note that they
are equivalent in form. Essentially, the very conditions (8,29)
enable us to find the solution of the problem formulated only
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given the condition that we have the known impulse transfer function
w(t, 7) of the dynamical system enabling us to filtrate the signal

measured. In the one-dimensional case we will have

, (1, I) = . w (t, 8 , N(d, ) d, , ( 8.3 o )

R,,V(tpred, .)= f a (t),).dt (8.31)

We can easily see that conditions (8.30) essentially are
Weiner conditions, that is, the condition of the optimal filtration
of the signal measured, therefore in the one-dimensional case the
separate solution of the sequence of problems in optimal filtration
and prediction of the states of the random process ensure an optimal
value of the quality criterion (8.26), since

(t, E )= Rp~ (t, V(t

Thus, Eq. (8.31) is of the form

R, = (tpred , a) ) ()R,, (r, ) d. (8.32)

Comparing Eqs. (8.15) and (8.32), we can note that essentially
they differ in the correlation in the right-hand side of Rf(=.)

and R,,(2,), which naturally is important from the standpoint of
solving the prediction problem.

Above we examined the algorithm of the continuous treatment
of observation functions for the purpose of solving the problem of
predicting the future states. The operating scheme of the predic-
tion device is given in Figs. 8.1 and 8.2.

When digital computers are used for solving the problem of
predicting the future states of a process, the observation functions
ni(t) will be measured at the discrete points tI + t, ..., t2 /290

with an interval At:

288..............................
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Fig. 8.1. Scheme for the prediction of phase
coordinates at a given instant of time

Fig. 8.2. Scheme of predicting phase coordinates
at a given instant of time with smoothing of

measured signals

and the problem of constructing the prediction algorithm reduces
to the realization of the algorithm

I I)(tpred) = Va-,(t + jAt).

To determine the coefficients ai , let us introduce the

vector A composed of elements aij of the form

A*= (anasu ... a aa#gn...al ),

and let us arrange the measurements of the observation.functions /29
in a vector-row of the form
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Then Eq. (8.33) can be represented in the form

y(t ) re ) G at, N - x n.pred MOI

Formulating the criterion for the estimate of the precision
of prediction, in the form

(tpred'  I c(Aa t A(A)dA,

we obtain a system of linear algebraic equations for determining
the coefficients

M[y(t )c,]= V a M Ic c ] (r= 1,2,...,N). (8.34)pred
The expressions M y(tpred) c / and M[cic,j in the system of

pred rs

equations (8.34) denote M g/_(tpred)-(iAt)1 and M ,(jAt), (iA)]J

for v,6 = l, 2, .q., ; i, j = , 2, ..., n.

In practical problems, f and n can be fairly large numbers,
therefore in several cases it appears expedient to formulate the
coefficients ai(t) by using some system of specified functions

(iM (t), .:(t),..., Yk (t),

then we will have

a,(t)= a j, (t)  (i= 1,2,...,1).
J=' (8.35)

Substituting Eq. (8.35) into the equation for the quality
criterion (8.13), we get

I t M
I= R (t )alk (tp , ) dr

y pred Z' ak') pred)c

1 Al, , t,

jl, I Al,
'V , 'I

y= (tpred )-- __ i a 'p cr (8.36)
I 290,
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where we use the notation /292

tI

w =3 ,S % (C) (I)R t, ) drdl. (8.37)

From the condition i~-=0 , we get the system of algebraic

equations for determining the desired coefficients aik:

w acr (i=1,2,...,1; k= 1,2,..., Ms). (8.38)

This procedure enables us to avoid the need to obtain a system
of integral Fredholm equations of the first kind that have con-
siderable inconveniences in its solution, however the convergence
of the solution to the optimal value for a small number M1 is

difficult to ensure, although as M1 - the solutions (8.38)

tend to ai(t).

For i = 1, the system of equations becomes

V w aP = 'L (k = 1, 2,..., MI).
p-1

The mathematical expectations M[y(t )n. (t).] and MFqr (t)
Tr (T)] necessary for carrying out the compreations, and the
e ements wir' wk can be computed by processing the sequences

(1) (2) A(N)
Y(tpred) A ), y(tpred A y(tpred ),

(1 )  (2) A(N)
S(t , A ), ' (t (2), ., ,

pred pred' pred

(i = 1, 2, ... , ), ' (8.39)

obtained by integrating the system of differential equation (8.1)
for the sequence of the random vector

", (8,40)

using the digital computer. Difficulties associated with computing
the coefficients wi and wi based on Eqs. (8.37) can be overcomeor k
to a large extent if these coordinates are represented in the form
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k % = ypredJJ,

wij = M [Z'Z1,
cr

where

_I (8.41)
= [ (I) (I)kfI/.

Realization (8.41) can be easily computed on a digital /293
computer by modeling the process (8.1), if the initial system of
equations is supplemented with a system of differential equations

a= t (t)% (I), [t,, t, (i = 1,2,...,1; k= 1,2,..., i).

For the remainder, the treatment of the sequences

computed for the sequences (8.40) can be carried out by using
recursion relations of the method of statistical tests.

In solving the problem of constructing the prediction algo-
rithm, we used a priori information on perturbing actions causing
the observed process to deviate from the reference process. The
control process does not provide for the accumulation of information
on the perturbing actions and adaptation of the resulting algorithm.

Use of prediction results in accordance with problems 8.2 and
8.3, for optimal control of a process, requires that we know the
effectiveness of the control actions applied at the instants of
correction tl, t2, ... , tp for the phase states of the process at

subsequent instants of correction and at the terminal state of
the system.

8.3. Determination of the Effectiveness of Control Actions on
the State of the Process

In formulating the optimal control AU:, AU 2,..., AUp , we must

-determine-the state of the-process that.is caused by -the given
control, that is, we must know the structure and parameters of
the state of the system under study as a function of the controls

AUi

AX (T) = &X (AUz, AU,B,..., 1 ,, T)
(8.42)
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or the state of the system at the next instant of correction

AX(t,+,) = AX(AU,, ). (8.43)

Since the controls AU i are applied to system (8.1) discon-

tinuously at the instant of time ti and remain constant over the

interval t ( r[tt'!+r], determining the structure of functions (8.42)

or (8.43) can be associated either with representing the latter
with the Taylor series

AX (T)= AX(T, A U = 0) + V OAx(T) Au +.

AX! (t +) = AX tt,, AU, = -0 i I. +...

(8.45)

or with the approximation AX(T) and AX(ti ) by several poly- /294
nomials: 1

AX(T) = ao + U .a- ..u(8 +
t- '(8.46)

AX (t, = d,, + a,AU, +....
(8.47)

To construct series (8.44) and (8.45), it is necessary to
compute for the reference motion of process (8.1) sensitivity
functions of the first, second, and higher orders of the vector
AX for the control actions.

Using sensitivity equations usually involves considerable
preliminary work in determining differential sensitivity equations.
First-order partial derivatives can be computed when there is a
linear model of the process (8.1)

AXA- = A (t)AX + B(t) U,

under study is available if the integral of convolution is used:

Since AUj=const over the interval t I [t,,i t+, then we will have

(T)= ( )B( . (8.48)
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For calculations based on Eqs. (8.48), it is necessary first
to compute the cross sections w(ti, t), w(T, t) of the impulse

transfer function w(t, T) by the linear model (AX=AAX1 at different

instants of time t, t 2, ... , tp, T.

In principle, both these approaches can be successfully used
in solving the problem formulated, however they are marked by one
common disadvantage, associated with considerable preliminary work
in linearizing the system of nonlinear differential equations (8.1).
One should note an additional circumstance that often is not given
appropriate attention in constructing the control for nonlinear
processes. When reference trajectories are computed often equations
(8.1) are integrated under the condition that all the random
components of the perturbing factors are equal to zero, that is,
the system of equations

x =f x,, x ,..., x., IM v, 1 . ., (v,,), 4(t)),
x to) = Ml xI,,] (i= 1,2,..., n).

(8.49)

is investigated.

We denote solutions to the system of equations (8.49) by /295

i(t) (i = 1, 2, ... , n). Let us denote the mathematical expec-

pectations of the solutions to system of equations (8.1) by

xi(t)=Al[xi(t)], (i=1, 2,..., n). Obviously, the difference of the resulting

solution
Axi(t) = x,(i) -x (t) (i = 1,2,.... n)

(8.50)

is not equal to zero in the general case.

Control of the process (8.1) in order to reduce the mismatches

Ax,(t, V) = xt(t, V) - xi(t) = Ax,(t)+ A. ,(t, V) (1 = 1,2,..., n) (8.51)

to zero involves compensating both the systematic error A.{t),

as well as the random component of the mismatches, which naturally
----can-lead t-o considerable- deviations- of the--control actions from
the reference values and to considerable deviations of the instanta-
neous states of the process from the reference states when there
are constraints on the control actions.
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To compensate the statistical error of mismatches Axi(t), it

is obvious that we must find the mathematical expectations of the
correcting impulses AU i so as to ensure A._(t)O0, or to consider

as programming motions the phase states xi(t), which in general

gives the same effect, and namely there is a replacement of the
reference motion with respect to phase coordinates 5i(t) by the

phase coordinates xi(t) (i = 1, 2, ... , n). The latter means

that linearization of the equations of motion (8.1) must be
conducted so that the elements of the matrices of the linear
model of the process

dt =  a(t)A -  bt 1 + 1c6 I V1 (8.52)
1=1 J=1 j-1

are computed for the reference trajectory characterized by the
state x.(t) (i = 1, 2, ..., n), that is,

I  _ ; bc o f c , ,

From the computational point of view, this means that in order
to obtain the phase coordinates x.(t) it is necessary to investi-

1
gate the nonlinear perturbed system of equations (8.1) by one of
the methods of analyzing the scatter of nonlinear stochastic
systems for determining the solutions xi(t), and then to linearize

the nonlinear equations.

Use of sensitivity equations also presupposes the parametric /296
linearization of nonlinear stochastic equations (8.1) relative to
the solutions xi(t):

z = Y a,zlk+b, (t) (k = 1, 2,..., p),
(8.53)

where

i-Vl
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Therefore to compute the effectiveness of control actions by means
of the system of linearized equations (8.52) or the sensitivity
models (8.53) requires considerable preliminary work in determining
the solutions xi(t) and in linearizing nonlinear equations (8.1)

with respect to the solutions found.

Accordingly, it appears possible to indicate a less laborious
algorithm of computing the effectiveness of control actions by
employing the above-described method of stochastic approximation.

Using the working formulas obtained in Chapter Six and
computing the elements of vector Z with one of the methods of
investigating nonlinear systems, we obtain the structure of the
function AX with respect to the control parameters. As a whole,
the computational procedure consists of the following.

We introduce the vector of random parameters pt=(AUI, AU,....

AU ) ; we determine the range of the variation in the control

parameters; and we assume that they are random with a normal or
uniform distribution and that there is no correlation between the
elements of the vector '. Then we determine the statistical
characteristics of vector A based on a knowledge of the range of
variation of the controls. We construct a random sequence of
vectors

, IL . (8.54)

and for each of its elements, by solving the system of differential
equations (8.1) for the vector A=O(V=O, -AX=O) , we construct

a sequence of vectors AX(ti), AX(t 2),..., AX(tp), AX(T) , for example

AXV (T), AX 12
) (T),...., X(A) (T). (8.55)

Treatment of the sequences (8.54) and (8.55) enables us to
compute the elements of the vector Z=MdIA(T)AU , and this means,

the desired regression coefficients.

Naturally, when the functions AX(ti ) are approximated by /297

polynomials, the question of the degree of the approximating
polynomial arises. This question can be answered by computing
successively regression coefficients for two neighboring degrees
of polynomials or from an analysis of the error of approximation.
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8.4. Optimal 'C6Cortrols with Pr'ediction of Phase Coordinates

Let us examine successively the solution to problems 8.1-8.3
formulated in Section 8.1. In problem 8.1 there is no problem of
predicting future states, however it quite closely borders in
structure of control algorithm problems 8.2 and 8.3 and its
solution can be of interest from the standpoint of clarifying
the advantages of optimal control with prediction of phase states.

Since seeking for the structure of the function O(AX) by
using analytic methods of synthesis is a problem that is quite
laborious and unresolvable in practice, the solution (8.4) is
usually sought for in the class of specified functions by using
the representation of the function (AX) employing series of
the form

r x(f.,I = k! -- "x' (t) +

I-1 (8.56)

whose coefficients are selected from the condition of ensuring
that the quality criterion (8.3) has a minimum.

By introducing the one-dimensional vector q composed of the

coefficients k,kI', . k , ... (i=1,2, .. p; , j=1, 2, .... P) and by

substituting Eqs. (8.4) and (8.50) into system of equations (8.1),
we get

q,, q2,. I q* ),

x1(t,) = x,o +  x,,o (i 1,2,..., n).

(8.57)

Thus, the control process is described by the system of non-
linear differential equations (8.57), the right-hand sides of which
contain the unknown parameters of the control algorithm. The
numerical values of these parameters usually are found by solving
the subsequent problem.

Problem 8.4. For the process described by the system of
nonlinear stochastic equations (8.57), it is necessary to determine
the parameters of control K on the condition that the quality cri-
terion (8.3) is provided with a minimum value.

Problem 8.4 belongs to the class of problems of searching for
an extremum of an implicit function of many variables and can be
solved by one of the iterative methods of searching for an extremum
discussed earlier. Here a good initial approximation for elements
of the vector q(O) to a considerable extent determines the conver-
gence of the iterative methods of searching for an extremum of

29-71



criterion (8.3) and the volume of computations involved in opti- /298
mizing it. Let us indicate therefore one of the possible (0)procedures in selecting the initial approximation of vector q
for problems in control of the terminal state of process (8.1).

In problems of terminal control, usually the condition of
ensuring at the final instant of time of operation of the system
some set of conditions

(8.58)

is set up.

Let us expand the functions AL in a Taylor series in

elements of the vector AX:

d= +. (8.59)

If the number of conditions (8.58) is equal to the number of
elements of the vector AU, that is, p = V , the coefficients of
the Taylor series (8.61) computed for the reference motion at the
correction instants of time can be taken as the ze'ro approximation
of the vector q with reference to the effectiveness of the control
in the i-th instant of correction.

The problem of controlling the descent of a flight vehicle
into the earth's atmosphere in the longitudinal and lateral planes
by means of two controls -- the control of the angle of attack and
the control of the slip angle -- can serve as an example.

If the problem of controlling the flight vehicle is to ensure
that it lands at a specified point on the earth's surface, then
naturally it is required to satisfy the two conditions

AL,= L, (X (1)) - L, = 0;AL = L (X(t)),-L(X = 0

where L1 and L2 are the characteristics of the 'longitudinal and

lateral motion of the flight vehicle.

By determining the expansion of the-functions -AL1 and AL 2-

in a Taylor series for the i-th control instants

SI O..,tj

AL! AL4- ~' (8.60)
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and considering the effectiveness of the control (let us assume
that it is determined by a linear regression)

L (T, ;) c C,--,, + y ,i
A" (T, 1,) +L i Vu.

from the conditions /299

A ' (7, 1) = 0.

AL"' - AL,' (T, ii) 0

we can obtain a control algorithm of the form

At(I ) 
_ 7aL -

Sa

- L L,',- CfAL (8.61)

where

C I

= CL,L-, - AL., AL, ,

Substituting into Eqs. (8.61) Eqs. (8.60), we get the controls
in the form

__ L I.0 A L,2 AL, 7 L, Lb

+AX* AX 4-...

2) - i' AL' 
",O+ CLALO 

L'l1 + C/L,,1

A+ A. A +
- T -11 b + 5C' 0'

+Ax A (8.62)

__where .

I' = L, it). ' IdL,

b - t ) 0 I
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From the equality of Eqs. (8.56) and (8.62) we get the zero
approximation for the vector of coefficients q).

For the remainder, the solution to problem 8.4 is carried out
by employing algorithms for the statistical optimization of the
dynamic systems.

We can similarly solve problems of constructing the control
for problems 8.2 and 8.3; here in the expansions of the control
functions (8.56) we must use the values of the vector AX(t)
obtained by prediction based on data of instantaneous measurements.
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